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ABSTRACT

A model is proposed for binary time series with marginal
probabilities given by logistic regression on explanatory variables, by analogy with
the first order autoregressive error model for least squares regression.
Measurements at adjacent time points are assumed to have an odds ratio that is not
equal to one and that is constant as a function of time. Measurements separated in
time are assumed to be conditionally independent given an intervening
observation.

Consequences of using an ordinary logistic model in the presence of
serial dependence are explored. The closest logistic model, defined as the one with
the minimum Kullback-Leibler distance, is shown to be the one with the same
marginal probabilities. Consistency of the maximum likelihood estimator of the
serial dependence model is proved under certain conditions, and a procedure for
finding these estimates is given.

Properties of the model are found, including expressions for the
joint probabilities and the odds ratio between observations separated in time. The
model is shown to generate *-mixing processes.

A score test is derived in order to test for independence after
. performing an ordinary logistic regression, and properties of this test are explored.

The effects of missing data on the score test and on estimation of the odds ratio
(with known coefficients) are presented.

The model is applied to the problem of automatic classification of
EKG data based on feature extraction. A positive serial dependence is found in the
examples presented. -
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Chapter 1

Introduction

1.1 The serial dependence model

Logistic regression is a common procedure for modeling a binary vector Y

when there are explanatory variables. Under this model

P[Yt=1]
log PLYt=0] =

t

where X is the vector of explanatory variables. This model assumes the

observations on Y, given X. are independent. If Y is a time series, how-

ever, the independence assumption may not be realistic.

A similar problem can occur in ordinary least squares. If

Yt = Xtf + t

it may be reasonable to assume the sequence (at) is serially correlated.

The simplest model for a serially correlated series [at) is the first or-

der autoregressive model, with

at = p8t-1 + Ut

for some p less than 1 in absolute value and for a sequence of independent

normally distributed (ut) with common mean 0 and unknown variance a'.

The parameter p measures the correlation between successive values of stt

this is a natural parameter to measure dependence between normal random

variables. For binary variables, however, the odds ratio is in many re-
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spects the natural parameter for measuring dependence.

This reasoning leads to the following model for serial dependence in

logistic regression:

P[Yt=l]
log p[yt=0] = x[1.1

P[Y t=Y tI =I] P[Y t =Y t-=0]
p[yt=0, = = for all t, [1.2]

and Yr and Yt are conditionally independent given Ys if r(s~t. (All

probabilities are conditional on the (Xt) sequence.) In the remainder of

this paper I will refer to this model as the *serial dependence model.'

1.2 Related models

Other models for binary time series have been proposed. For series with-

out covariates, Billingsley (1961) considers stationary Markov processes.

Keenan (1982) considers processes whose marginal probabilities are func-

tions of an underlying stationary process. Kedem (1980) also considers

stationary binary time series.

Logistic regression models for variables measured over time have been used

in studies of *panel' or 'longitudinal' data, in which repeated binary

measurements are taken on a large number of subjects. Typically each in-

dividual time series is short, and any asymptotic theory that is developed

holds as the number of subjects approaches infinity while the length of

each series remains finite. Korn and Whittemore (1979) consider a model
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in which the conditional probability of (Yt=1) is given by logistic re-

gression on the covariates and on Yt-l" (In models such as these Y, must

be treated as a special case, and Korn and Whittemore assume the existence

of YO=Yno where n is the length of the series.) Most other models also

use a logistic function for the conditional probabilities.

Zeger et al. (1985) also consider longitudinal data, but their model is

similar to the serial dependence model in that they model the marginal

probabilities as logistic functions of the covariates. Apart from their

application to longitudinal data, their model differs from the serial de-

pendence model in two respects. First, they use the correlation between

adjacent binary responses as their measure of association, and they assume

it is constant. Second, their covariates are functions of the subject

only and so do not vary with time.

The serial dependence model could be used for panel data, and many of the

other models in the literature could be applied to a single long binary

time series with time-varying covariates. However my motivation in pro-

posing this model is the automatic EKG classification example in Chapter

8, so in this paper I will consider only a single long binary time series.

1.3 The odds ratio as a measure of association

Many measures of association are possible for binary random variables, but

there are some desirable properties possessed only by those measures that

are functions of the odds ratio. In this section I will discuss the pos-

sibility that other measures may be useful.
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The analogy between the serial dependence model in logistic regression and

the autoreSressive error model in linear regression breaks down in the

case of perfect association. In linear regression, if the correlation

parameter is ±1 and the coefficients are known, then knowledge of Yt

provides perfect knowledge of Y for all st, since lItl is then a

constant for all t.

For binary variables an odds ratio of 0 or infinity does not provide an

analogous property. Consider the following pair of two-by-two tables of

joint probabilities of (A,B) and (C,D):

AD
1 0 1 08 . .0 1.6.6 0.0 2 1.2 0 .0 .4 .4

.6 .4 .6 .4

In both tables the odds ratio is infinite, but only for the pair (C,D)

does knowledge of one member of the pair provide perfect knowledge of the

other member. This happens only when the two random variables have the

same marginal probabilities.

This feature of the odds ratio was observed by Feinberg (1981). He dis-

tinguishes between 'complete* association, as in the (AB) pair, and *ab-

solute' association, as in the (C,D) pair. Since the serial dependence

model does not distinguish between the two, it may not be a useful model

in an application where it seems necessary for 'perfect' association to

imply Rabsolute' association. If correlation were used as the measure of

association, this implication would hold. Correlation was used by Zeger

et al. (1985).

.-.- . .... . .* J -.. . ... ... ...-.-.. ....... :.....-............-..-. ,........ . ......... ,.......... . ....-
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Let the event (Yt-..iYt} be called a 'state change." Examining the tables

above shows that in the serial dependence model with an infinite odds ra-

tio, state changes are possible if changing state would avoid moving to an

event of smaller marginal probability. For example, let Yt-1 be A and let

tbe B in the above table. The transition from (A=O} to (B=1l) avoids the

transition from {A=O} to (B=-O}. Since P[A=O] > P[B#O], a state change is

possible.

Data from a variety of sampling models can be entered in a two-by-two

table. For example, fixed numbers of patients might be assigned to a

'treatment' and a 'control' group, and then might be classified as 'im-

proved' or 'not improved' at the end of the study. One advantage of the

odds ratio is that it is invariant to row and column multiplications, so

in the hypothetical example it would not depend on the number of patients

assigned to each group.

The above tables of marginal probabilities suggest a sampling model in

which both classifications are random, and the row and column totals sum

to 1. This is the case in the serial dependence model. In sampling

models where the row and colun- totals are not arbitrary, the invariance

property of the odds ratio loses some of its importance.

1.4 Notation

I will use the following notation in this paper. Relationships between

some of these quantities are shown in Figure 1.1. Note that throughout

.................................

.................................
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this paper the independent variables are treated as given, not as random

variables.

Symbol Meaning

Yt Dependent variable at time t

Xt  Vector of covariates at time t

Pt Prob[Yt=l] (marginal probability)

nt(j) Prob[Yt=lIYtl 1 j ] (conditional probability)

at  Prob[Yt=YtilJ ] (joint probability)

Odds ratio between successive observations

pVector of coefficients

, Maximum likelihood estimates under the serial dependence

model

Maximum likelihood estimate of under the ordinary

logistic model

...............................

.

,o. . .. - .
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Figure 1.1. Relationship Between Parameters

of the Serial Dependence Model

.q(1)

-- Curve of constant odds ratio:
.' (I) = (0)/(1+ (4-1) (0))

f=

"Line satisfying relationship between
.- (Pt,Pt) - -- marginal probabilities:

S(I) = (pt lpt-i) + ((pt-l-1)/pt-i) f(O)

Pmin 1-Pmn

For any given values of o, Pt, and pt-1, the corresponding values of£(1) and

(0) are those at the intersection of the curve of constant odds ratio deter-

mined by , and the line determined by Pt and pt-. The quantity Pmin is

defined in Chapter 4.
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Chapter 2

Properties of a Process Generated by the Model

In this chapter I will examine some properties of a process [t generated

by the serial dependence model. I will derive the joint distribution of

two observations from the process and express the log linear representa-

tion of this joint distribution in terms of the quantities obtained from

the model, namely the odds ratio and the marginal probabilities. I will

derive an expression for the odds ratio between Yt and Yt+n for n>l. I

will prove that (Yd is a mixing process. Finally I will illustrate some

of these properties with plots of the odds ratio between Yt and Yt+n as a

function of n and y.

2.1 The 1oint distribution of two observations

In this section I will obtain the joint distribution of two observations

from a process generated by the serial dependence model, by relating the

parameters of a log linear representation to the marginal probabilities

and odds ratio. I will consider consecutive observations, but the same

results apply to non-consecutive observations if the odds ratio between

them is known. (A formula for the odds ratio between non-consecutive

observations is given in the following section.)

For any given t let pt = P[Yt=l] and Pt-1 = P[Yt-1 = 1 ] ' and let o be the

(constant) odds ratio between Yt and Yt-1" Let Pij P[Yt-=iYt=j] be
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decomposed as

log Pij = u + ul(i) + u2(j) + U1 2(ij)

with the usual constraints

U U 2(j) ~ =~ U 1 2 (ij) U 2i ) 0.

First I will express the quantities obtained from the serial dependence

model as functions of the parameters of the log linear representation.

The marginal probabilities can be written as

Pt = Pll+PO1 = exP(U+Ul(1 ) +u2 (1)+ul2 (11 ))+exp(u+u 1 (0)+U 2 (1 )+ul2(01)
)

= exp(u+u2 (1 )) [exp(u 1 (1)+ul2 (ll)
) + exp(u (0)+ul2(01))]

= exp(u+U2(l)) [exp(u1ll)+Ul2(11) + exp(-u 1 (1 )-U12(11))]

=2 exp(u+u2 (1)) cosh (u (,)+ul2(l1)).

Similarly

Pt-1 = 2 exp(u+ul(j)) cosh (u2(1i+ul2111)).

The odds ratio satisfies the equation

log 1 = log pl1 + log PO0 - log PlO - log PO1

= (U+U l(l)'u2(1)+u12(11) ) + (u+U 1(0)+U2(0)+u12(00))

-(n+I+u + (u+u +a +
- 1( )+U2(0)+ul2(10) 1(0)+2(1)+Ul2(01)

12(11) +l2(00)- '12(10)- 12(01) = 4 u12(11)

The log linear parameters can be obtained by solving three equations,

since given Ul(l), u2(1), and u1 2 (1 1 ), the other parameters are determined

by the four constraints given above and the constraint Iij Pij = 1. The

-p
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two-factor term is, from above, ul2 (1 1 ) =(log 10/41 it depends only on

the odds ratio. Unfortunately the single-factor terms depend on the odds

ratio and both marginal p;..I'abilities. They solve the pair of equations

Pt = 2 eIp(u+u 2(l) ) cosh (u1(1)+(log V~)/4)

=t1 2 exp(u+u1 (1 ) ) cosh (u2(1)+(log ip)14)

The parameter u can be removed by using these equations to obtain

log -i- = 2u()+ log cosh(u1() I~ log O~-log coah(u 1() log (P)

and a similar equation for log [pti'/(1 -ptil)3

2.2 The joint distribution of three observations

For some r~s<t let

pij = P[Yr= i Y=j, Y=k]

be represented by a log linear model:

lgpijk + 1(i) + 2(j) + 3(k) +1u2(u) + 23(jk)

+- ( 2.1113(ik) + 123(ijk)

with the u-terms satisfying the constraints

u() = 2Q u M k3 ) i 12(uj) u 120ij)

~U23(jk) u ~ 23 (jk) ~u 3(ik) u I 13(ik)

U 2(ik 13ik) u1=(j) 0. [2.2]

(These are not the same as the similarly named quantities in the previous

section.) The u13 and u123 terms are 0 because Yr and Yt are independent

given Y. (see Fienberg, 1981, page 33).

. . . *-.. . . . .. . . . . . . . . . . . . . . . . . . .



Lot T12 be the odds ratio between Yr and Y.and let V3be the odds ratio

between Yand Yt. (If the Y's are consecutive observations, then 1)12=

(p3- ). The object of this section is to find I3 the odds ratio

between Yr and Yt.

Let a dot subscript denote summation over the corresponding index, so for

example pij* = Ik Pijk* This quantity can be written as

+ exp(u+u l(i) +12(j) +13(0) +'1z(ij)+u23(jO))

= 2 exp(u+ul(i) +u2(j)+U12(ij) ) cosh(u 3 (1)+u2 3(jl))

Summing over the other indices gives

Pi.k = 2 exp(u+u l(i) +13(k) ) cosh(u 2(l) +u1 2 (il)+u 23 (lk)~

p *k = 2 exp(u+u 2j+u3(k+u231 ) cosh( u 1,+ul2,))

Then

V12 =PlPO)(l.O.

and

log V12

log[exp(u+u (l)+u12(,) +ul2(11) )(exp(u 3 (1)+u23 (11) )+exp(u 3 (0) +u23(10))

+log[exp(u+u 10+u2 0+11 (00 ) )(exP(u 3(1)+u23 (0 1))+OzP(u 3 (0)+u200

1Iog[exp(u+u 1 (1)+u2(0 )+ul2 (10 ) )(exp(u 3(1)+u23 ((fl))+Oxp(u 3 (0) +u23(00))

-log[exp(u+u 1(0) +12(l)+112 (0 1) )(exp(u 3 (,)+u 2 3(11 ))+.Ip(u 3 (0) +u 23(10))

This can be simplified by using the constraintr 12.2] to relate the
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u-terms and obtain Ui(l) = Ul(o), etc. The result is

log ($12 =4 u 12 (11 ) [2.3]

or ul 2 (1 1 ) =(log V1)4 Similarly u2 3 (1 1 ) =(log V23)/4.

The remaining odds ratio is given by

log (013

+U+U(1) +u3(1)+log~exp(u 2 (1)+ul2(11)+u23(1 1) )+exp(u 2 (0) +Ul 2 (10 ) +U23 (0 1))

1UU(1 )+u3 (,)' lo~x 2 (l)+u12 (0l)+u 23 (l0 ) )+x~ 2(0) +ul 2 (00 ) +u 2 3 (0 0 ))

-U- log[ s( u2  )u 3 1  ]+og2 Osh(u( 1 u 2()- 3()]

-log[ chu 2(1)+ulu 3 1 ) +o[ ohu()u2(11)+u23 (1 ))

-u() lgchu( 1 +lgp+lg chu 2()l 1 0)2+log

lg2cosh~u2()(o Y12 log cosh~u2()(o 1 -o ~)4

This yields the relation

cosh 2u 2()+ cosh[ (log V12+1og 923 )/2  ( 2.4]
'V13 =cosh 2u() +- cos h[ (l1og p1g tl-2T7/2 J

For the special case of three consecutive observations, (012 IP23 ft., and
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cosh 2u 2(l) + cosh log [25

'13 cosh 2u 2 (l) +1 [25

These expressions can be used to calculate the dependence between observa-

tions separated in time. Suppose T1'*...'ln have marginal probabilities

Pi .. ~nand common odds ratio V betwen Yt and Yt~ for all t. Then

V12=1), and for any t02, ipl can be found recursively by applying the above

expression with marginal probabilities (Pi'Pt-i'Pt) and odds ratios V~~

and Vtl,,t~p

Use of these formulas requires calculation Of u2(1). The log linear rep-

resentation provides the relation

'2(l) = (log pill + log pol0 - log p101 - log p000 )'
4

The Markov property implies Pijk P[yr-iYs=J] P[Yt-kIYs'j]

F[yrai,Ys=j] P[Ys=j,Yt-k] / pa. The pairwise joint probabilities can be

obtained from the marginal probabilities and a=P[YrwieYsJl. Equation

[1.1] provides an expression for a:

'1 (1+a-p r - s~ 26
~r 2)(5 a

This determines a uniquely, because the quadratic

11pra)psa)- a(l+atxpr-ps 0

has only one root in the Interval of acceptable a values, or

max(pr.ps) ( a < min(1,Pr+Ps).

This can be seen by examining Figure 1.1. It can be proved by noting that

the right-hand-side of [2.6] increases from 0 at a-sax(prp,) to Infinity

at a-min(l~p,+p,). It therefore takes the value 912 an odd number of

.21.
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times. A quadratic can have no more than two roots, so there is a single

root in this interval.

2.3 A mixing property

There are various mixing properties that determine how dependence in a

stochastic process dies off as a function of time. The strongest is

*-Mixing.

Using the expressions for the odds ratio between observations separated in

time it is possible to bound the dependence between distant observations.

Specifically, I will show that a process generated by the serial depen-

dence model is a *-mixing process. I will use this property later to

establish consistency of the maximum likelihood estimator.

Definition: A process is defined as a *-mixing process (Hall and Heyde,

1980, page 40) if there exist a number N and a function f defined on the

positive integers such that

"* (1) f(n) is non-increasing in n for n)Ni

(2) f(n) approaches 0 as n approaches infinity;

(3) for all t, given any event A in the a-field generated by

-Y,,.."",Yt) and any event B in the a-field generated by

{Yt+n '* } '),

IP(AB) - P(A) P(B)I S f(n) P(A) P(B),

where AB is the intersection of A and B. By the Markov property, it is

sufficient to consider only A=(Yt=1) or t-0) and B=(Yt+n=l) or {Yt+n=O).
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Take any fixed t and let lnbe the odds ratio between Ytand Yt+l. Let

A=(Y =1) and B=Y =) Then

-P(AB) [l+P(AB)-P(A)-P(B)]

Vn [P(A)-P(AB)3[P(B)-P(AB)T

=- P(AB)-P(A)B)]
V [P(A)-P(AB)][P(B)-P(AB)]

IP(AB-P(A)PB)lI 'Yn1 [P(A)-P(AB)J [P(B)-P(AB)]

SI~nj1I P(A) P(B).

The other combinations of A and B can be treated similarly, and two of

these combinations lead to the bound I(1/pn)-11 Therefore

IP(AB-P(A)PB)I 1 ma~~nl~jlqn- P(A) P(B),

so it remains to show that Vpn approaches 1 uniformly in t. I will show

this for n=2J by induction on j. Then I will extend the result to other

values of n by showing 1%+41-1I S 1Pfn.- for all n.

Suppose 101 (the proof for pfl is similar). The expressions given above

for V13 show that if fp>l. then V,>l for all n. Therefore 0 is a lower

bound on ((#,-l) for all n in the following proof.

For each t there is a quantity u (equal to u2(1 in the log linear expan-

sion carried out above) such that

=cosh 2u + cosh log lp
V2 cosh 2u + 1

It is easy to see that if a, b, and c are positive and if b>c, then

(a+b)I(a+c) is a decreasing function of a; its derivative with respect to

a is (b-c)I(a+c)5 . Since cosh x 1 for all x, It therefore follows that
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for all t

1 +cosh log~ 1
V22 2 4 y 4 4

and therefore 42~-1) (-)4

Now for a fixed positive integer J. let n-2J~l and k-2-2j. and suppose for

all t

Fix t and let IYA and IBbe the odds ratios for the pairs (Tt*Tt+n/2) and

(Yt+n/2'Yt+U), respectively. Then there is a value u such that

cosh 2u + cosh [ - log IiA + - log V.

cosh 2u + cosh [ -lgt -L~ log Ipa

T 10S1 os fPA 1

2 2 2 cs log (1+k(yw-l)) + I log (1+k(q-1))

1 +-! [ (1+k(rl-)) + (1+k(q-l)) I
3 1

which Implies Vn,-l S k(9 1 )/4 = (r-l)n-2 . Therefore by induction, if f(n)

is defined as (r-1)n'2, then (ion-1) S f(n) when n is a power of 2.

It remains to show that f can be suitably defined when n is not a power of

2. The above argument shows list inf (ien-l) - 0, so It Is sufficient to

show that Iypn.1-1I < Itp-1I. But for any given t there is a quantity u

such that

cosh 2u + cosh T ~ log 'F1 + ~-log 1]

%n+l - 11
cosh 2u + cosh T log 'Pn - - log IF]
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Then for all t.

1 + cosh C.-log vin + 1 log V1
1n+ 1 *Bl 1n1 1+ cosh C -log tn- log V]

say. If fp=l, then Bn+1=l. and as ji approaches infinity, Bn+1 approaches

T This implies Von+, Vn, because Bn+i has no local maximum for 1 VS.,

since its derivative is always positive:

OB 1  sinh (I log V + Ilog ip
n+1 1

8V21 (1+cosh C.-log lp - I- log 1

sinh 1o 1p + o l+cosh [1 l1) +1 I loC--ogy 2-o ~n 2 o y 2  g Vn1

2 j (1+cosh Cllog V ~log ri2

1 . ("n/) 12_ .(/)l/2)( + 1/ )/)

2tp[1+ L ((V/'v2_( ) 1/2+(n 12

4~ (1 + .2 ('/'n 112+(Ip /,)1I2) ]2
gives
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1/2 -1/2 1/ 1/2

= )(/2 -lyn) -1/2-(1/n l/2+lPn/V)1/2 + n- l/Pn

(V 12 + 1/2 1/2_ n-1/21
(1 V-12 Tn -P + ((tn- 1 /n d

which is strictly positive if pn)l. (If yn=l, 1n+1=l.)

Therefore if f is defined as

f(n) (1r-1)/n
2  If n Is a power of 2, [2.7]

f(n-l) otherwise,

then f satisfies the three conditions in the definition of a *-mixing

sequence. Repeating this proof for the case y<1 gives the following

proposition.

Proposition: The serial dependence model generates S-mixing sequences.

2.4 Some numerical calculations

Figures 2.1 through 2.6 show the log of the odds ratio between Yt and Yt+n

for lSn&410, calculateo for some special cases using the formulas derived

in this chapter. The step functions are obtained from the upper bound f

on (%-l) derived in the previous section, equation [2.7]. For each curve

the marginal probability pt takes the constant value 0.5 for all t.

' k" + II "a"IWh~d~ll.......................................... .. . .



23

For plots with <l, f is obtained by applying [2.7] to the process [Zt] -

(YlI-y2 ,y3,1-y4, ... ); each even-numbered term is changed. If the origi-

nal process has odds ratio st between Y. and Yt, the odds ratio betwen Z.

and Zt is Yst if s-t is even and I/pst if s-t is odd. Therefore the upper

bound obtained from f, and a lower bound that is the inverse of this upper

bound, bound the odds ratio of the original process.

. . . . .

._ •"' -" .'-" "-. "" '-,".-. -"'- . .."."..'. . ..-" " .". .". ."." ... "-".". ."-".. .-. .."-. .-.."."" ' "• -" "-" '""- '"'" "
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Chapter 3

Consequences of Ignoring Serial Dependence

In linear regression with serially correlated errors, coefficients esti-

mated by ordinary least squares are consistent, but the estimated standard

errors are not correct. In this chapter I will show that the same holds

for the serial dependence model. I will give some theoretical indication

that the ordinary logistic coefficient estimates are consistent estimators

of the coefficients in the serial dependence model, and I will verify this

with a simulation. I will also perform another simulation in which I will

show that confidence intervals computed using the standard errors from the

logistic model do not have the correct coverage probabilities.

3.1 Coefficient estimates

Suppose a process is generated by the serial dependence model with unknown

coefficients P0. I will show that the nearest ordinary logistic model to

the serial dependence model, in the sense of minimum Kullback-Leibler dis-

tance, is the one with the same coefficients. Since these coefficients

maximize the expected values (under the model that generated the process)

of log of the ordinary logistic likelihood, this is an indication that the

ordinary logistic coefficient estimates should converge to the true

values.

Let f be the density function in the true model, and let (pt) and (at) be

.................................................• .. -. - ..--'-, ,. ... ,.°. . . ... . . " -. ... .-..... .--... . .- ",..-.... .. ..-.-.-.- ..-.-. ,'.
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the usual marginal and joint probabilities in that model. Let g be the

density function for an ordinary logistic model, and let (qt) be the mar-

ginal probabilities in that model. They can be written

log £ log P[Ylo-yl]+log P[Y2 y2IyY11+..+1og P~nyln-~n

It [yt log qt + (i-yt) log (l-qt)J

and

log f yl log p1 + (l-yj) log (l-pl) + 4t Z Yt-iyt log (Gt/pt...)

+ (1 -Yt-i)Yt log( (ptct)/(l-Pt-1)) + YtI-t log(pt...-at)IPt..1

+ (l-yt...)(i-yd) log ((+tP-t,/lP-)

Then the Kuliback-Leibler distance is

Kfg Ef I log (f/g) I

=p 1 log-q + (i-p 1) Ilgy- + at10p~q
t=2

" (p -a log ptat + (p -a ) 1o t--

" (1+ -p )10.i+a t-pt-1 -pt 31
+ (at- p (1- log i)(i) [3.1]

To minimize this distance it is helpful to collect terms and write

Kfg =A - p1 log q, - (l-pl) log (l-ql) -
t h at log qt

+ (1) -a t )log q + (p -ci- t)log (1-q ) + (l+aLt-pt--pt )log (1-q ))

= A-pi log qI- (1-P I)1og(i-ql)- U4>2 ptlog qt(-tlglq)

where A is a function of (pt) and (at~) but not (qt). The derivative with

respect to qt is
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aK f P1 +(-
-taqt  + q t o t

which is 0 if and only if pt = qt. The second derivative is positive for

all values of pt and qt between 0 and 1, so the Kullback-Leibler distance

is a minimum if qt=Pt for all t. This condition is satisfied if the co-

efficients in the two models are the same, so the following proposition is

proved.

Proposition: The closest ordinary logistic model to any serial dependence

model is the one with the same coefficients, if distance is measured by

the Kullback-Leibler distance using the serial dependence model as the

true model.

Let X = log y, and suppose the coefficients in the two models are the

same. The value of the Kullback-Leibler distance between the two models

is well approximated by a fourth order Taylor series around X-0. If X=o,

then Kfg=0 because the two models coincide. From the proof of the propo-

sition, aKfg/O = 0 at X=0. Taking derivatives in [3.1] and coll6cting

terms with logarithms gives

gt atlogt-t-- + - (1 - 1 - 1 + 1)-. t=2 ( PCtu)(P t-l-at)

n Dc a t  
n Ba t

4--+. log V "

t=2 t=2

Applying the chain rule and taking repeated derivatives lead to

8K fOat

OX all
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U+ = ( X++)e t+ 2 a 2
"x2  l 81 2

"3 _- 8t 2X 2° t +.3X. t 3

a4K a8a

__ 3 +).x ~ 2  . 3  + 3

ax 4l ap 3

• a4Efl t 820__ +16X +3)e$ 3x t
:-- = (X+3)e.' + 9)2x"  ' ,

+ ke
4 X a4at

Equation [1.2] or [2.6] defines a in terms of j and the marginal proba-

bilities. The first derivative of at with respect to , is

?.a ot  (Pt-aLt )(P t-l-a t[ .28 f - l(-1) [3.2]

Higher derivatives can be obtained from this expression. At X=0, the

derivatives simplify to

Oal = Pt(1-Pt) Pt-lll-Pt-l)

"20/a 2 =-2 (8a/p) [pt(1-P t-1 + Pt-1(1-Pt

-- ~2 2 (_t2+3tlP)t1

83 ua/P3 = 6(aa/ap) [p2(1-Pt +) 2_ - t-Pt-l)]

Therefore the Taylor series up to 4 gives

. . . . . . . . . . .... . ~ . . * -

o.* . . . .
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Kf (.) Z (1/2) 12 P Pt( 1 Pt)pt-1(l-Pt-1)

+ (1/3) X3 Pt (_Pt)(1-2pt)Ptl(1_P t-l)(1-2pt-1 )

" (1/8) 04 Pt(lP t )Pt_l (1_Pt-1 ) [16p t (lPt-1)6p t-1(lP t)

+6p 2(1-Pt) 2+6p2 1 (1-Pt)
2 +lPt(1-Pt)pt_1(1-pt_1),

so it follows that

K ) = (1/2) X2 1p (i-Pt)Pt(l-P

[l+12/3)X(1-2Pt)(1-2pt )+0(12)1. [3.31fg t

This shows that given a sequence of Opt) such that (Pt-1 /2 ) and (pt_1-1/2)

tend to have the same sign, the logistic model is closer to models with

negative X than to those with positive X. The converse is true if

OPt-l/2} tends to oscillate in sign.

Figure 3.1 shows the exact Kullback-Leibler distance between the two

models for one example. Here I generated 100 independent normal random

variables Udt} and used an intercept and slope both equal to 1.0. I

calculated the Kullback-Leibler distance for various values of the odds

ratio equally spaced on the log scale between 0.1 and 10. The curves are

values given by the first one, two, and three non-zero terms in the Taylor

series in X. The series up to X4 gives a good fit to the exact distances

except for very low values of the odds ratio, where the two models are

more distant than the approximation suggests.

To examine the coefficient estimates using the logistic model with data

generated under the serial dependence model, I performed a simulation.

The conditions were identical to those described in the previous para-

- .-.- .-......-.. '. . .. .. .-.. -. '..-."-......-
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graph. The results are shown in Table 3.1.

It appears that each of the quantities in the table is an increasing func-

tion of the odds ratio. The quantities associated with the intercept,

however, increase much faster. The sample bias and standard deviation

both double as the odds ratio moves from 0.1 to 10. For the slope, the

bias increases by a substantial proportion but the standard deviation is

more nearly constant.

The bias is too small a fraction of its estimated standard error to con-

firm the effect with a hypothesis test. For example, the difference be-

tween the bias at 9-10 and that at f=O.l is about equal to its estimated

standard error. However the obvious trend indicates that the observed

difference is not an artifact of the simulation.

3.2 Standard Errors

The ordinary logistic coefficient estimates differ from the true coeffi-

cient values only by a small fraction of their standard deviations. How-

ever Table 3.1 shows that the standard deviations of the intercept esti-

mates change by a factor of two as the odds ratio changes from 0.1 to 10.

This is an indication that the standard errors produced by the logistic

model cannot be correct. Therefore inferences about the coefficients are

suspect.

This fact is more apparent in Figure 3.2. This shows the result of a

second simulation, with 1000 observations at each value of the odds ratio
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Table 3.1. Ordinary Logistic Estimates

Observed bias and standard deviation from a sample of 400 ordinary logis-

tic estimates for each value of the odds ratio. Each regression has 100

observations and a single explanatory variable. The true intercept and

slope values are both 1.0.

Odds ---- Intercept -__ Slope --

Ratio Bias Std Dev Bias Std Dev

0.10 .025 .203 .048 .308

0.13 .026 .208 .054 .302

0.16 .029 .214 .061 .297

0.20 .024 .215 .063 .296

0.25 .024 .216 .060 .296

0.32 .023 .223 .061 .296

0.40 .027 .229 .057 .296

0.50 .031 .241 .061 .304

0.63 .031 .242 .060 .304

0.79 .034 .247 .060 .305

1.00 .038 .256 .061 .311

1.26 .040 .272 .065 .312

1.58 .040 .281 .066 .321

2.00 .035 .294 .064 .328

2.51 .044 .309 .066 .327

3.16 .044 .322 .073 .340

3.98 .042 .338 .079 .335

5.01 .042 .352 .083 .339

6.31 .047 .375 .084 .340

7.94 .053 .391 .088 .350

10.00 .054 .402 .097 .357

... . . .. . . . . . . . .. .. . . . . . . . . . ... . .
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but otherwise with conditions identical to those in the previous simula-

tion. In each sample I counted the number of "misses," or the number of

times the true value of the intercept was not within 1.96 standard errors

of the estimated value, with both estimates and standard errors from the

ordinary logistic model. This is a test of size 0.05 using the asymptotic

normal distribution of the estimates.

For each sample the proportion 0 of misses is an estimate of the size 0 of

the test. Since the number of misses follows a binomial distribution, a

95 percent confidence interval for the size is 9 ± 1.96(9(1-)/I1000)1/2.

The Figure shows this confidence interval for each sample, along with a

line marking the nominal 0.05 level.

Clearly this test does not have the proper size if the odds ratio is not

equal to 1. For smaller odds ratios the estimated standard errors in the

logistic model are too large, so the intercept estimates are more accurate

than they appear. For larger odds ratios the situation is worse. Confi-

dence intervals computed using the ordinary logistic model are too opti-

mistic; their coverage probabilties are much smaller than their nominal

values.

.................................... i
. . . .. . . . . . .4 . . . . . . % .]
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Chapter 4

Maximum Likelihood Estimation

In this Chapter I write the likelihood function and its derivatives. I

give conditions that imply consistency of the maximum likelihood esti-

mates, and I describe a method for finding these estimates. I also com-

pare the maximum likelihood estimator with some other estimators.

4.1 Solution of the likelihood equations

If the likelihood equation is written as the product of conditional like-

lihoods, its logarithm can be written

n a
L yllog p1 + (-y) log(l-pl) + YtYt-1 log P

t=2 pt-i

Pt-at Pt~-at

+ Y (1 -Y t l lo g 1 + (l- Y )y t  flo g
1-Pt-1 - Pt-l

l+a-p-p_
+ (1-yt)(-Yt log , [4.1]

where at = Prob[Yt=Yt.=l]. This quantity is defined by equation [2.6],

and its derivatives are

aaa= (Pt- at)(pt-l-at )

ag 1- (i-() (2a t-Pt-Pt_)

act P t (1-P t)I t [ P t-l- (V-1)Q t ] + P t- (1-P t-1 )X t-1 [1Pt- 4 -1)a t]

. ." a I -( -1 ( pat - t-t 1)

The derivatives of the log likelihood are most easily expressed in terms
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of the derivatives of a and the marginal probabilities. The marginal

probability pt does not depend on ( but its derivative with respect to

is pt(l-Pt)Xt.

The derivative of the log likelihood with respect to 1 is

) n a a( t  y t Y t _ 1  Y t l l Y t -1) Y t -1l ( -y t ) ( -y t ) ( 1_ Y t -1)

21_ = -- - _____ + )(-~)---at __?Fqp t t Pt-a t Pt-l-at l+Q t-Pt-Pt-1

The expectation of the term in brackets is 0, so the second derivative of

a does not enter into the Fisher information matrix. Terms of that matrix

that involve derivatives with respect to V are

E 2 L[ a a 12 I _ __J 1 1

2 f =p ++ 1 + - + 1+t-Pt-pt 42

t=2  t -a t P t -a t - 1

• -[ Ot a Pt(1-Pt) (l-Pt~l)xt +Pt- (l-ptDr..l(1-P t ) t-., 1

respect to [:

E-+

r.°oO 
a t a t- - t l C~-t p -

"o=2

"° t.p)Ipt1z t11ptl(-tx-

+o [ .3

81 pC (D"-p- -) ( - a (+Ltp-t1

Th°eann.umti eurstedeiaieo h o ieiodwt

repc toA
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8L P t yt2' y ______ Y l-t1 ____________ 1 Iy )Iy

+ - t i l ~x~ I T_ +

t=2 tt - -

t- = -tt=2- t t at pt--1) tptp-

[pt(i-Pt)(lt2x + il- i) -P xt 1 *t

t=2
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hood estimators involve assumptions about and manipulation of the Fisher

information matrix. This is difficult here because the information is un-

wieldy. However a proof of consistency is possible under some conditions.

Wald (1949) proved the consistency of the maximum likelihood estimator for

independent and identically distributed random variables under certain

regularity conditions. A simplified version was given by Chernoff (1972).

These proofs did not make use of the derivatives of the likelihood func-

tion. A similar proof can be used here by noting that the log of the

likelihood ratio (of the likelihood at an alternative parameter value to

the likelihood at the true parameter value) is a supermartingale, and by

applying a strong law of large numbers.

The strong law requires some degree of independence. As was proved in

Chapter 2, if [Y is generated by the serial dependence model then it is

a *-mixing sequence. It is easy to see that if [t is also a Markov pro-

cess, then Mt. .... Yt+s) is a *-mixing sequence for any function f and

integer s. Strong laws are available for such sequences.

To prove consistency it is necessary to be able to distinguish the true

parameter value 0 0 (log IOP 0 ) from any alternative value er(log (#p).

(Values below calculated at 0-00 are given the subscript 0.) To do so it

is necessary that the conditional probabilities nto - (-t0(0)'Ut0)) =

(P[Yt=lIYt_ 1=,OoJP[Yt=lIYtI 1=l0
]) be --casionally different from the

probabilities Nt M (st(O),nt(l)) computed under the alternative 0. Refer-

ence to Figure 1.1 indicates that these conditional probabilities coincide

.
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if ip=io and if (p-,~t~tp~ where

falls on a set S p S (00,0) for which

Pt-io RtO(l) + (1 -pt-lo) RtO(o) = to [4.5]

Pt-i Rt0~1 ) + (1-pt-i) Uto(o) -Pt [4.6]

long as a substantial proportion of the pairs (Xt-1'1 t) are removed from

S., one may expect to be able to discriminate between 00 and 0.

Consistency follows from the following assumptions.

[All Bounded covariates: there exists a positive M such that for all t,

lIt ISM.

This assumption implies the existence of a positive p such that for all

t, p (min(pt 0.l-pto). This in turn implies the existence Of Pmin such

that 0<pminSp* and for all t, pmin <min(1rto(l),l-wt0(l).wto(O),l-wt0 (O)).

[A] Identifiability: given there exist s ~rs(Po'~(0P),

and T-T(P0 ~f) such that

11 n-1 #(t: 2Sn and d((Xt-leXt).S) ), [4.8]

where
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#A is the number of elements in the set A,

d(z,S) is the minimum distance between z and S. and

Sx=Sx(O0,O), with e=(log voA).

This assumption states that a non-negligible proportion of the (1t-l,1 t )

pairs do not lie arbitrarily close to the manifold on which nt0 . It

appears awkward, but following the proof I will expand upon this condition

and give other conditions that imply it.

[A3] Compact parameter space: the true values of the parameters can be

assumed to lie in a known compact region.

With this assumption we can consider the restricted maximum likelihood

estimator subject to membership in the compact set.

The first two assumptions imply the following two lemas. The first shows

that a non-negligible proportion of the at's are bounded away from nto"

The second shows that a non-negligible proportion of the log likelihood

ratios are bounded below zero.

Lomma 1. If Assumptions [Al] and [A21 are satisfied and if O=(log )0,P),

0000, then there exist e1=e1(Oo,G), nwq1(O0,), and T=T( 0 ,O) such that for

all n)T,

q < n-1 #(t: 2 t~n and d(nt,wto)2s). [4.9]

Proof: The set Sx is the set of (XtIX t) for which nt=lt0. Let

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..,.-. .- -. .-. . . . . . . . . ..- - - : .'., ::,% -,' :-, "-, -._. -" . , " ,"-, -'_ .:
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De  ((t.laxt): Ixt-ll..j, Ixtl.X, d((Xt_,Xt),St) s). [4.10]

Since d(ftnto) is a continuous function that is positive on the compact

set De, it achieves some positive minimum value el(S,0,0) on it. Assump-

tion [A2] therefore establishes the lemma.

Loma 2. If Assumption [All and the conclusion of Lemma 1 hold, there

exist n1=q(0,O)>0, 62=62(00,0) and TAT(00 ,0) such that for all nT,

< n- 1 #(t: 2 t~n and

E[log ft(YtIYt-lO)-log ft(ytIYtleo)] _ - 2 )- [4.11]

Proof:

E[Iog ft(YtlYtllo)-log ft(Yt1Yt_lo)]

S[t(1) l-gt (1) 1
. w (1) log+ (1- (1)) log t

t-1 o t() to 1-71toil)

+ ( t-Pt-lO to(O) log Rto(l 0) + (l-Nt(O ) log ]nto(0)

Assumption [Al] confines the components of ft to the interval

Pain,'-Pin], so the expected value of the log likelihood ratio is

bounded above by

[ log 6+ (1-) log 1s+6]

supn Pa n -P ain < 5< -P sin

This inequality is true because for fixed a the quantity in brackets is

the negative of a Kullback-Leibler distance, so it is an increasing

function of 161. Because it is a continuous function of s that is nega-

tive on a compact set, it achieves some maximum negative value on that

set. Applying Lemma 1 concludes the proof.
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Theorem. Let 00 (log V90 ft0) be the true value of 0 and let C be any

compact subset of the parameter space that does not contain 00 Then

assumptions [Al] and [A21 imply

has sup f2 (Y2 1yie . n (Yn _yn19

-o v.p. 1.n-*w 88C f 2 (Y 2 Y1 %) 0 * f n(Y n y nl 0)0

Proof: Note that the above event is equivalent to

n

ham SUP log f t Ytl -'0 - log f(Y I! ey- 0[.2
n-4- 98C t=2

I will show that this equality holds almost surely.

Pick any 0 in C. Define

ft(YtIt-1.0,p) $ up f (Y I Yt- 1 e)I0'-0Ikp t

and

Ut(e,p) = log ft(YtIYt~1,0'P) - log ft(YtIyt.10o).

U (0),p) is an upper bound on the log of the likelihood ratio in a neigh-

borhood of 0. More specifically, for all O'e(0': 10-0I1(p), Ut(O.p) >

log ft(YtIYt-j.0')-log ft(YtIYt-1 0).

There are two cases: either Oro or jo1obut POP. In the second case

lemmas 1 and 2 hold. If IV#o, then there is some positive 6 larger than

the minimum distance between the curve

Pmininln(Os lpmin)

and the curve
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Pmin7<n(O) l-Pmin)

This is most easily seon by examining Figure 1.1, and is proved by noting

that these curves are disjoint compact sets. Then for all t, d(lrt,!!to) el

for some ea. But this implies the conclusion of Lemma 1, so Leoma 2 holds

for this case as well.

Pick any positive e small enough so that lemma 2 applies, and let n~ and T

be as in that lemma. Let I be the set of time indices such that

E~log ft(YtIYt-i,G) - log ft(YtIYt-li9o)] < -82.

By continuity of the function E~log ft(YtIYt...,')] on the compact set

I(OXt..Isdt: Base, I~-I-X IXtI.<X), and therefore by uniform continu-

ity on that set, there exists a positive plpili9OO) such that for all

tal, E[Ut(O9p)] -82/2 if p<pl.

Since E~log ft(YtIYt-i,G) - log ft(YtIYt-lO)]SO for all t. if follows,

again by uniform continuity, that there exists a Positive P2=P2(00,O) such

that for all W~, E(Ut(O9p)] S Ae/(-I if P<P2. Hence for n )T and

n E [U ( 0 , P < 2 n l + n 2 n=- A n i

t=2

which approaches -~ as n u~

By compactness, there is a finite covering of C by sets (0: 1"-0I<Pej).

j=l,...,k. For every O.C there is a jSk such that

U 0 jPj log f (Y ltI-t09) -log ft(T Yt-t 0),

t............................ ............-
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so (Ut(Ojpej)), j=l,...,k, form a finite collection of random sequences

that bound all the log likelihood ratios for OeC. Therefore to prove the

theorem it is sufficient to prove that for every J, I Ut(Ojep) -i-- al-

most surely.

Because (Yt) is a *-mixing process, (Ut) is also a *-mixing process. Be-

cause it is a continuous function on a compact set, it is bounded, so

n

n -2 E[ (Un-EUn)2] < and sup n E IU UI < .
n n n L. t t

nl t--=

Therefore by Theorem 2.20 of Hall and Heyde (1980), n - I [Ut-EUt] -)0

almost surely. But I EUt --)-, so the theorem is proved.

Assumption 2 above requires that a non-negligible proportion of (Xt-lt )

be at least some minimal distance from each of a certain family of mani-

folds. Unfortunately a smooth manifold could be put through any finite

collection of points, so this condition is hard to check. A closer exami-

nation of the manifolds may be useful.

Let f10, the true value of the odds ratio. The assumption requires that

if 00 is the true value of the coefficient vector, for any other vector

a non-negligible proportion of the time (lt-l,lt ) lie at least some

minimal distance from the manifold on which ft'!It0 . Given Xtl'P0 and

.Xt'0, the marginal probabilities Pt-l,0 and Pt,0 are determined, and

therefore nt0 is determined. But reference to Figure 1.1 clearly

indicates that for any value of Pt-l there is only one value of pt that

produces a given _. Therefore given Xt-l'O, Xt'P is determined.

... . ~ ~ ~ _ " I . . . . , . . , ._ ..- ...,.. , --• ,_ : .., -.° : .. -.-.--.' .'
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The same statments apply to the other linear combinations, so any three of

the quantities (Xt-1100, It'00, 1 t-1'0 , Xt'f) determine the other. There-

fore each of these quantities is a single-valued function of the other

three. There are two conditions under which points cannot be restricted

to be on this manifold:

1. (Xt.l,Xt ) is a random variable with a non-degenerate distribu-

tion, so it is not concentrated along a lower dimensional mani-

fold with probability one.

2. There are integers t and s such that Xt=Xa but either Xt.Xs_.1

or Xt+loXs+1 .

The second condition is likely to hold if the X's can take only a finite

collection of values, or if they are the result of an experimental design.

The first condition is likely to hold under a variety of circumstances.

The assumption is somewhat stronger; it requires that a non-negligible

proportion of the (Xt-,X t ) be bounded away from the manifold. This con-

dition would likely be satisfied if the X's take finitely many values or

come from an experimental design. It would also hold if the (Xt were

independent and identically distributed with a non-degenerate distribu-

tion, and would probably hold under milder conditions as long as the

dependence is not too great and the distributions do not converge to a

degenerate distribution.

"J...*
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4.3 Comparison of Estimators

Using the expression for the first derivatives and the information matrix

from section 1 of this chapter, it is not difficult to find the maximum

likelihood estimates of (p and A by Fisher's scoring method. However the

results in the previous chapter suggest the ordinary logistic estimates of

p may be adequate. In this section I perform a simulation to compare

estimators of 0 and y.

In this simulation I generated samples of 100 observations Yt for which

the marginal probabilities pt satisfied log (pt/(I-pt)) = 1 + xt , where

the (xt) were independent standard normal random variables. I generated

200 such samples for each of 21 values of 1 equally spaced on the log

scale between 0.1 and 10.

For each sample I estimated the coefficients both by ordinary logistic re-

gression and by maximum likelihood estimation for the serial dependence

model. I estimated the log odds ratio by three methods:

1. Unrestricted maximum likelihood estimation for the serial depen-

dence model (UNLE).

2. One iteration of the scoring method, starting with the ordinary

logistic coefficient estimates and with p-l (1STEP). (This is

equivalent to setting the score statistic, defined in Chapter 5,

equal to its expected value and solving for f.)

3. Restricted maximum likelihood estimation, with the coefficients

constrained to their ordinary logistic estimates (RMLE).

.* "- .,'. ..... .' ... _ _ :. J . . -. '- . . . . . . . . ..... . . .-..." " '. - . . . . ..;
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The simulation results are summarized in Tables 4.1-2 and Figures 4.1-3.

Table 4.1 shows the correlation between those estimators that estimate the

same quantity. In each case the correlation seems to vary with the odds

ratio, with lower correlations for odds ratios far from 1. Most correla-

tions exceed 0.9 when the odds ratio is not far from 1. The correlation

between IE and UMLE is quite near 1 for a wide range of odds ratios, so

this is an indication that if the odds ratio is not expected to be extreme

a priori, the restricted maximum likelihood estimator, which is simpler to

compute, may be as good as the unrestricted maximum likelihood estimator.

If the odds ratio is known a priori to be neither zero nor infinity, the

ISTEP estimator has an additional advantage: it always gives a finite es-

timate of the odds ratio. Perfect association occurred in many samples,

so the RMLE and UMLE estimates of the log odds ratio are infinite.

Table 4.2 shows the observed bias and standard deviation for the coeffi-

cient estimates. As was shown in the previous chapter, the standard devi-

ations of the intercept increase with the odds ratio, and this phenomenon

is apparent here as well. The bias of the slope estimates is smaller for

most of the maximum likelihood estimates, but there is no noticeable pat-

tern to the other quantities. Because the biases are small in comparison

with the standard deviations, a much larger sample would be required to

test for a significant difference between the logistic and maximum like-

lihood biases.

1: .



53

Table 4.1. Correlations of Estimates

For each value of the odds ratio, the table gives the correlation between

the given pair of estimates in a sample of size 200. The last column

gives the number of observations with perfect association; for these sam-

ples the ULE and RMLE values are zero or infinity. These observations

were excluded in computing the correlations.

Odds ISTEP/ ISTEP/ RMLE/ Perfect

Ratio Constant Slope RIL ULE UNLE Association

.10 .986 .869 .865 .693 .733 10

.13 .989 .903 .849 .723 .925 17

.16 .988 .877 .918 .848 .944 0

.20 .990 .894 .894 .779 .943 4

.25 .993 .969 .954 .944 .981 1

.32 .991 .952 .952 .898 .970 0

.40 .993 .959 .964 .791 .868 3

.50 .996 .962 .985 .981 .998 0

.63 .990 .981 .981 .981 .999 0

.79 .999 .981 .995 .995 .999 0

1.00 .997 .962 .995 .994 .999 0

1.26 .999 .991 .996 .994 .998 0

1.58 .993 .989 .994 .993 1.000 0

2.00 .997 .962 .990 .955 .969 0

2.51 .993 .989 .982 .981 .999 0

3.16 .995 .961 .986 .959 .972 0

3.98 .990 .965 .972 .935 .971 0

5.01 .989 .923 .965 .859 .908 0

6.31 .985 .925 .939 .936 .998 0

7.94 .979 .927 .937 .779 .853 1

10.00 .987 .897 .897 .717 .818 5
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Table 4.2. Observed Bias and Standard Deviation

The elements in the table are the sample bias and standard deviation of

the coefficient estimates in the simulation. Observations with perfect

association are omitted.

SConstant Slope ------

Odds Logistic MLE Logistic MLE

Ratio Bias Std dev Bias Std dev Bias Std dev Bias Std dev

.10 .0047 .208 .0024 .201 .0211 .309 .0153 .273

.13 -.0026 .180 -.0064 .176 .0694 .327 .0550 .289

.16 .0224 .212 .0176 .207 .0057 .288 .0125 .275

6 .20 -.0088 .200 -.0121 .198 .0352 .254 .0249 .265

.25 .0409 .247 .0414 .253 .0793 .308 .0680 .320

.32 .0476 .235 .0492 .242 .0740 .299 .0638 .316

.40 .0185 .211 .0169 .212 .0378 .355 .0298 .339

.50 .0314 .227 .0299 .224 .0471 .291 .0394 .296

.63 .0290 .232 .0295 .236 .0345 .347 .0363 .342

.79 .0369 .274 .0371 .276 .0360 .286 .0381 .290

1.00 .0451 .285 .0471 .288 .0605 .294 .0681 .307

1.26 .0323 .281 .0297 .281 .0523 .323 .0504 .330

1.58 .0312 .306 .0289 .306 .0077 .300 .0073 .294

2.00 .0827 .310 .0842 .311 .0676 .310 .0676 .319

2.51 .0547 .299 .0525 .300 .0234 .276 .0218 .276

3.16 .0213 .310 .0155 .308 .0452 .302 .0355 .307

3.98 .0687 .317 .0657 .319 .0911 .307 .0877 .297

5.01 .0649 .378 .0574 .373 .0474 .317 .0330 .285

6.31 .0672 .426 .0590 .431 .0617 .330 .0675 .308

7.94 .0150 .327 .0139 .322 .0408 .237 .0388 .230

10.00 .0416 .395 .0351 .383 .0740 .283 .0546 .265
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Figure 4.1. Stem and Leaf Display of Log Odds Ratio Estimates
True Log Odds Ratio is 0.0

One-step Estimate. Values off plot: -1.8 -1.6 -1.3 1.3
1.4

5 -1.22
8 -1.100

11 -0.988
24 -0.7777766666666
41 -0.55555555444444444
69 -0.3333333333333332222222222222

(35) -0.11111111111111111111100000000000000
96 +0.0000000000000000000111111111111
65 +0.222222222222222333333333
41 +0.444444445555555
26 +0.6666667777777
13 +0.88889999
5 1.001

Restricted MLE. Values off plot: -2.1 -1.6 -1.5 -1.5
-1.5 1.6

8 -1.111
14 -0.999888
25 -0.77777766666
42 -0.55555555554444444
71 -0.33333333333333332222222222222
(33) -0.111111111111111111000000000000000
96 +0.00000000000000000011111111111111
64 +0.22222222222223333333333
41 +0.4444444455555555
25 +0.666666777777
13 +0.888888999
4 1.1
3 1.22

Unrestricted MLE. Values off plot: -2.2 -1.8 -1.6 -1.6
-1.5 1.4 1.8

8 -1.111
14 -0.999988
27 -0.7777777666666
44 -0.55555555554444444
71 -0.333333333333333222222222222
(33) -0.111111111111111111000000000000000
96 +0.00000000000000000011111111111111
64 +0.22222222222223333333333
41 +0.444444445555555
26 +0.6666667777777
13 +0.888889999
4 1.1
3 1.2
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Figure 4.2. Stem and Laf Display of Log Odds Ratio Estimators
True Log Odds Ratio is 0.69

One-step Estimate. Values off plot: -.9 2.2
5 -0.7766
6 -0.4
16 -0.3333333222
28 -0.111111110000
46 +0.000000001111111111
67 +0.222222222333333333333
89 +0.4444444444444455555555
(38) +0.66666666666666666677777777777777777777
73 +0.888888888888999999999999
49 1.0000000000111111111
30 1.2222222233
20 1.44444455555
9 1.66677
4 1.99
2 2.1

Restricted MLE. Values off plot: -1.0 2.4
2 -0.8
5 -0.766
9 -0.4444
17 -0.33332222
28 -0.11111110000
45 +0.00000000111111111
71 +0.22222222222333333333333333
88 +0.44444444555555555

(42) +0.666666666666666666666667777777777777777777
70 +0.8888888888999999999999
48 1.0000000011111111111
29 1.2222223333

* 19 1.445555
13 1.666677777
4 1.888

Unrestricted MLE. Values off plot: -1.0 2.3 4.7
2 -0.8
5 -0.766
9 -0.4444

17 -0.33333222
28 -0.11111110000
45 +0.00000000111111111
69 +0.222222222233333333333333
87 +0.444444444455555555
(38) +0.66666666666666666677777777777777777777
75 +0.888888888888889999999999
51 1.00000000111111111
34 1.222222223333
22 1.445
19 1.666667777
10 1.889999
4 2.00

. .."

. . . . . . . . . . . . . . . . . . . .



57

Figure 4.3. Stem and Leaf Display of Log Odds Ratio Estimators
True Log Odds Ratio is 2.30

One-Step Estimate. Values off plot: 0.1 0.2 3.6
4 +0.66
6 +0.89
11 1.00011
27 1.2222333333333333
43 1.4444444455555555
62 1.6666666666677777777
89 1.888888888888888889999999999
(39) 2.000000000000000000000111111111111111111
67 2.22222222333333333
50 2.44444444555555555
33 2.66666677777777
19 2.888888888999999
4 3.011

Restricted MLE. Values off plot: 0.1 0.1 4.3
3 +0.5
4 +0.6
6 +0.89
13 1.0011111
22 1.223333333
35 1.4444455555555
54 1.6666666666777777777
72 1.888888888888999999
93 2.000000000111111111111

(26) 2.22222222222333333333333333
76 2.4444444444444455555555
54 2.6666666677777777
38 2.8889999999
28 3.000111
22 3.222233333
13 3.444455
7 3.77
5 3.8899

Unrestricted MLE. Values off plot: 5.5 5.5 5.6 5.6 5.8
5.9 5.9 6.7 6.8 7.9 8.8

13.2
2 +0.11
6 +0.5689

24 1.000112223333333444
57 1.555556666777777788888888889999999
93 2.000000001112222233333333333344444444
(42) 2.555555555555666666666677777777788889999999
60 3.0000111122233444
44 3.5556777789
34 4.11112233
26 4.555789
20 5.00012222
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Figures 4.1-3 show stem and leaf plots of the log odds ratio estimators

for three values of the odds ratio: 1, 2, and 10. In Figure 4.1, with

• =l, there seems to be little difference between the estimators based on

this display, except the number of extreme values (*values off plot" in

the figures) is smallest for ISTEP and largest for UILE. The medians of

the estimators are about the same, and all are close to the true value.

In Figure 4.2 the situation is little different. There is a very large

value of UMLE, but otherwise the shapes of the distributions appear to be

very similar. Again the medians are about the same, and all are close to

the true value.

Figure 4.3 shows a more dramatic difference. The estimator ISTEP retains

the bell shape it assumed in the other figures, but RMLE has a noticeably

heavier upper tail. The shape of VILE is even more skewed, with eleven

extreme values off the high end of the plot.

The median of 1STEP seems to be a little smaller than the true value,

while UILE is a little larger. However for five observations (not in-

cluded in the plot) perfect association occurred, so RMLE and ULE both

were infinite.

In summary, this relatively small simulation does not show any advantage

to using maximum likelihood estimation in the serial dependence model

rather than ordinary logistic coefficient estimates. Using these esti-

mates and r1 as starting values, performing a single iteration of the

I.2"- - ... ..--"-... .. .... ... ' .. ".".'- .. -.... '.'.., .'
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scoring method gives a good estimate of the log odds ratio. When ji is

near 1 this estimator is not noticeably different from the others, but

when f is extreme it avoids the problem of perfect correlation.

If the standard errors of the estimates are also of interest, as is

usually the case, then the maximum likelihood estimate remains important.

The standard errors produced by this model differ from those produced by

the ordinary logistic model, and are closer to reality.

.. ,-........-...................... ..................-...-...... •--. ..- .-. .- ,. -. ,.. - . - - ,. -. ,..-., .'. ..-. , .
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Chapter 5

A Test for Independence

5.1 Introduction

Compared with ordinary logistic regression, maximum likelihood estimation

of this model takes a relatively large amount of computer time and re-

quires specialized software. It would be useful therefore to be able to

test for dependence without having to do the maximum likelihood computa-

tions. In some cases it may not be thought necessary to compute the

maximum likelihood estimates if a preliminary test does not reject the

hypothesis of independence.

Such a test can be based on the score statistic, which requires maximiza-

tion only over the subset of the parameter space that satisfies the null

bypothesis. Since independence implies f=l, testing for independence re-

quires computing the ordinary logistic estimates, as they maximize the

likelihood subject to this restriction. As a result the score test can be

performed with little more computational effort than that required by

logistic regression.

In ordinary linear regression, a test for serial correlation can be based

on the sample autocorrelation function of the residuals, or equivalently

on the Durbin-Watson statistic. A test based on the latter was developed

in a series of papers by Durbin and Watson (1950, 1951, 1971). As I will

:. . --"-"'. -"" • . .""" -. ' . .. '''''.-.-." -,-'* ' -,-.-'.' .-.-.. '' - . ' .'-. ' .. .- .- ', . ,-., ' "
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show below, the score test for this model is based on the sample autoco-

variance of the data.

The score test is described by Rao (1973) and by Cox and Hinkley (1974).

Let U be the score function and i the information matrix. To test a por-

tion ( of a parameter vector (yP), Cox and Hinkley define the score

statistic W by

W =u u , [5.1]

where U is the portion of the score function corresponding to q and itt

is the corresponding submatrix of the inverse of the information matrix.

When q is a scalar it is more convenient to retain the sign by using

instead

Wl/ 2 = U (i") 1 /2 . [5.2]

I derive the score statistic for this problem in section 2. In section 3

I give the asymptotic distribution of W under the null hypothesis and ex-

amine the empirical distribution in finite samples. In later sections I

consider the distribution under alternative hypotheses.

5.2 Derivation

The score function is defined as the derivative of the log likelihood.

Expressions for the derivatives appear on pages 41-42. Since this is a

test for independence, these expressions are to be evaluated at P=l.

Therefore at  ptPt-I and the score functions become

n

are 2 (Y ) (Y tl-Pt-1 [5.31
t=2
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n

U = al (Y x [5.4]

t=l

Note that since the unconditional expectation of Yt is Pt' the score func-

tion for the odds ratio has the form of the autocovariance of the [Yt ) .

The statistic also involves the information matrix. The three components

evaluated at fp=1 are

-E [PA__ = ( )Pt-(1-Pt [5.5]
Oyt t t t-1

-E [ ] = x pt(iPt)XtX, [5.6]

-E [ L 0 [5.7]ap a

Therefore the complete information matrix can be written

i= [ i0 J
p

n. p 1 PP t -(1-P t-1)0
,i"= Pt(l-Pt) xx

t l
t=1 0 x t x , 8

if p0 is taken to be equal to 0.

The score statistic is therefore
11[ (Yt-t MYt -t1 )]2

w t - - [5.91
Y ~tll-pt) tt-l1t)

where Vt = l/(l+exp(-xtp)) and P is the estimate of in the ordinary

logistic model. Since this is a test on a scalar parameter, the other

statistic can also be defined:

k : .__ _ _ _ _ _ __ _ -_ .- _- "" - ' : ' : " '-"''-,- ": . " " - """" , .""""- -. "". ". . . . ..-"" .- . ." " .- - -•""" """" ' ' ' " '
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J r1/2 [ (Yt- t) (Y t_l-Vt_l) ] / (.0- "2 = (5lO
.' [ (Pt1-f t) Pt-l(1-f t1 ) I

5.3 Distribution of the score statistic under the null hypothesis

According to asymptotic theory, the distribution of W under the null hy-

pothesis of independence should be central chi-square with one degree of

freedom, and the asymptotic distribution of W1 /2 should be standard nor-

mal. To examine the distribution of W for finite samples I used a simula-

tion. Figure 5.1 shows a normal probability plot of a sample of W1 /2

generated by the following procedure:

(1) generate Xl1 ....XIO 0 independent standard normal random

variates

(2) generate YI,...,YI0 0 independent Bernoulli random variates

with probability pt of success satisfying log(pt/(l-pt)) =

1+It

(3) perform ordinary logistic regression and compute W1 /2

I generated a sample of 400 score statistics by this procedure, using the

same (Xt) each time. From the plot, the sample seems consistent with a

standard normal distribution.

Since W is a test statistic, its upper tail behavior is of interest. For

example, (0.10)(400) = 40 of the score statistics could be expected to

fall above the 0.90 point of the chi-square distribution, or 2.706. In

this sample 48 were observed above the critical value. If the distribu-

"4 "

• .-.. . . " . . -. ; ... ." .-. - .,. - ....-. .. .. " ..- ,. .- . -. -, - . .,.• . .-.. .-..- ,, . - . .. .-.- . .\,.• .-. -- , 4 , ." .-. - .' . -. .-
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Figure 5.1. Normal Probability Plot for Score Statistics

Generated with i,=1

Score
statistics

4.5+

3.0+

2*

- 33
1.5+ 765

+9 *

7+

.0+..

-1.5+ *84
- 45

- 33*
- *2

-30 ------ +-----------+--------------+--------------+--------------
-3.0 -1.5 .0 1.5 3.0 4.5

Standard normal quantiles
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tion is correct, the number of significant statistics should have a bino-

mial distribution with mean 40 and standard deviation [(0.1)(0.9)(400)]1/2

6, so a difference of 8 from the expected value is not significant at

the 0.05 level.

The Kolmogorov-Smirnov distance between the empirical cumulative distribu-

tion of W1/2 and the standard normal cumulative distribution function is

0.049, a value that is below the 0.95 point of the distribution of the

Kolmogorov-Smirnov statistic, or 1.36n-1/2 = 0.068.

5.4 Distribution for nerb alternatives: first order approximation

To get some idea of the power of the test, it would be useful to find the

distribution of the score statistic when the odds ratio is not equal to

one. It is simpler to work directly with the odds ratio, but when con-

sidering alternative hypotheses it seems more natural to use X=log fp as

the parameter measuring dependence. Unlike (p, X can vary in either direc-

tion without limit. As will be seen below, the effect of alternative

values of X on the distribution of the score statistic depends on the

magnitude of X~ but is independent of its sign, or nearly so.

The asymptotic distribution of a score statistic under alternative hypoth-

eses is given, for example, by Cox and Hinkley (1974). Suppose the score

statistic W is computed for a sample of size n. With the null hypothesis

%o: X-.iO if a sequence of alternatives Hn: -.6 1/2 i ob osdrd

then the asymptotic distribution of W is non-central chi-square with one

degree of freedom and with non-centrality parameter 62 ia./n. (This is

.......... . .. . . .

.|...~

i- . ~.
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true here because the information matrix is block diagonal. In general

i)) should be replaced by (iX) - , where i-" is the corresponding

submatrix of the inverse of i.) Equivalently W1/2 has an asymptotic

normal distribution with mean 6(i./n)1/2 and variance 1.

As a basis for comparison, I generated twenty additional samples of 400

score statistics as above for various values of the odds ratio. I used

the same set of M I in each case. I calculated the observed power func-

tion in each case as the proportion of W values larger than 2.706, the

0.90 point of the central chi-square distribution with one degree of free-

dom. These values are those labeled "observed power" in Figure 5.2. For

each value 0 of the observed power, I calculated a 95% confidence interval

for the true power as 0 ± 1.96(0(i-0)/400)1 /2, and these confidence inter-

vals also appear in Figure 5.2.

The power given by asymptotic theory is simply P[V)2.706], where V has a

chi-square distribution with one degree of freedom and with non-centrality

parameter XOiu = 3.1(log 10). In Figure 5.3, this curve is superimposed

on the simulation results.

Clearly there is some lack of fit, since eight of the twenty-one confi-

dence intervals do not contain the value on the curve. Qualitatively,

though, the curve does seem to predict the observed power pretty well.

For 0.31(f.2.5, the intervals do contain the curve. It is not surprising

to see a lack of fit for more extreme values, since the curve is obtained
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by an asymptotic calculation valid for nearby alternatives.

The above procedure sheds some light on the upper tail of the distribution

of the score statistic, but not on the bulk of the distribution of W. I

used the Kolmogorov-Smirnov statistic as a summary of the difference be-

tween the cumulative distribution functions of the empirical and asymp-

totic distributions, and the results appear in Table 5.1. Column 1 con-

tains the odds ratio, and column 2 contains nl/2=20 times the Kolmogorov-

Smirnov distance D between the two distributions. (The other columns are

explained below.) Values larger than the upper 95% point of the distribu-

tion of nl/ 2D, or 1.36, are marked with an asterisk. The results here are

similar to those above; there is no significant lack of fit for .4V2.5.

The following sections describe two attempts to improve the accuracy of

the power curve. In the first attempt I obtain a higher order approxima-

tion to the distribution of W using the results of Harris and Peers

(1980). In the second I use more informal techniques to examine the

deviation of the simulated WI /2 from its theoretical distribution and I

find an empirical adjustment that improves the approximation to the

observed power.

5.5 Distribution for nearby alternatives: higher order approximation

One approach toward improving the fit to the observed power function is to

find a higher order approximation to the distribution of the score statis-

tic. Peers (1971) Save such an approximation for simple tests, and Harris

and Peers (1980) extended the results to composite tests.

.. . . . . .... . . . .

. . . . . . . . . . . . . . . . . . . . . .
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Table 5.1. Normalized Kolmogorov-Smirnov Distances Between the

Empirical and Fitted Distributions

For each value of the odds ratio the other columns give nl/ 2=20 times D,

the Kolmogorov-Smirnov distance between the empirical distribution of the

corresponding sample and the fitted distribution. Values larger than the

0.95 point of the null distribution of n/D, or 1.36, are marked with an

asterisk.

Odds First Order Higher Order Empirical

Ratio Approximation Approximatlion Approximation

.10 7.903* 2.456* 1.330

.13 5.842* 1.076 1.017

.16 4.931* .803 1.402*

.20 2.352* 1.609* .810

.25 2.342* 1.350 .785

.32 1.713* .985 .759

.40 .734 1.571* .931

.50 .860 1.080 .861

.63 1.076 1.331 1.317

.79 1.338 1.304 1.205

1.00 .972 .972 .972

1.26 .596 .637 .593

1.58 1.255 1.341 1.234

2.00 .929 1.461* .816

2.51 .881 1.7940 .590

3.16 1.7120 3.2070 1.012

3.98 2.314* 4.391* 1.144

5.01 2.888* 6.201* .769

6.31 3.718* 7.9500 .560

7.94 3.603* 9.032* 1.309

10.00 4.3610 11.154* 2.826*
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Because the derivation is lengthy, I present the results first.

The density of the score statistic W to order n- 2 can be written as a

linear combination of non-central chi-square densities, each with the same

non-centrality parameter but with different degrees of freedom. More

specifically the density is

g(w) = f(wzl,p) + n1/ cj f(wsl+2j,p) + 0(n-), [5.11]

j=0

where f(.,j,p) is the density of a chi-square random variable with j

degrees of freedom and with non-centrality parameter p. I will give the

values of p and the cj's below.

Several points can be made about this approximation. First, the first

term on the right hand side is the usual (first order) approximation to

the distribution of W under alternative hypotheses. Second, under the

null hypothesis all the cj's are zero, so both approximations lead to the

same distribution in this case. Third, this is simply an approximation to

an asymptotic distribution, and it will not necessarily integrate to one

in finite samples.

Figure 5.4 contains the power function for this higher order approximation

as well as the power function examined earlier. Any improvement here is

marginal. The new curve seems to give a better fit to the observed power

for (p(I, but it gives a poorer fit for f¥)I. Because it is not a true den-

sity and does not integrate to one, it gives values of the *power func-
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tion' that are larger than one for r8. Since the first order approxima-

tion has the advantage of simplicity, there seems to be no reason to

prefer the more complex approximation.

The third column of Table 5.1 contains the normalized Kolmogorov-Smirnov

distances between the empirical distribution of the sample and the higher

order asymptotic distribution. It, too, shows mixed results, with an in-

proved fit for V<1 but a poorer fit for r>l.

The remainder of this section consists of calculations of the quantities

needed to apply the Harris and Peers results to this model.

Though it is more natural to use X = log r as the parameter of interest,

it is more convenient to work with y. To convert the results for use with

X requires use of the chain rule to derivatives of up to third order. For

any function u(V),

ou au

2 2
a u 2 a u + On

3 3 2
8 u 3 a u 2u au3 3 + 3V2O +•
a). alp ar

Following the notation of Harris and Peers, define

"0k 1 8L[0I' u 12 80
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1 2 L u1 a3 L
ij n 86.84) j nijk n 80 aS k

p 1/2

kij E[u 1j, k,, j  E[Ulu ], k ,j, k  n E[uiujuk],

1/2 ]112 11 u
ki,jk = n E[u iUjk, kijk n E[uijk ]

where L is the log likelihood. All expectations are taken with 1 =l and

with the true value of A. All the k's are 0(1). Relations between these

quantities are given by Harris and Peers; in addition to the familiar

relationship

k. + k =0
i,j ij =0

there is a relationship between the remaining expectations:

kijk + ki,jk + kj,ik + kk,ij + ki,j,k 0.

Let the symbol K represent the matrix of ki,j'si it is simply the informa-

tion matrix calculated earlier. Let subscripts on K refer to the corres-

ponding submatrix, for example K22 is the submatrix of K corresponding to

p. Let a dot subscript refer to the entire dimension of K, so K. =

[K11 K1 2]. Define triply-subscripted K's similarly, so for example K2 .,.

is a three dimensional array of kiljk, with i1.

Let s = n1/2 log y measure the distance between the hypothesized and true

values of .. Define the following:

. ... . . . . .~.

... . ..°
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B= -1 = 0 : I-K2 K 22

Then the probability density of the score statistic is given by equation

[5.11] with non-centrality parameter

p = nK = X2/ t(1-Pt)Pt-i(l t-1

and with coefficients
13

0 o = [ e3(k1l,1 -k1 1 1 ) + 3 3 (kil+k 1 1)- 3e(K.. I+2K.,. 1)*J

1 = 3 L (k1 , - 3e 3(k1 1 1+k1 1 1) -3skl 1 lnp/
2

+ 3WK .+2K 1. j ]

.. ln ../12

C A np k 2

2  2 11,1.

0 1 83 kll.
€3  6 111

The notation A*B used in the expressions for co and c, means IijAijBij.

I present expressions for the remaining quantities without proof:

K1,1, nl pt-l (1-P l)-pt-1 )  t(1p )-2t)

K = -3n- 1  p Pt- (1-P t-)(1-2pt-1) Ptll-Pt)ll-2Pt)

. . .. . .
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.1,11 K 1,22 = 1 .2,2 = K2,1 2  K 2,2 1 = 0

n-1
K 221 = n -11Pt (-Pt) pt-1lll-P t-1) (z tlXi + xtxi_1 1

5.6 Distribution for nearby alternatives: empirical approximation

Lack of fit of V112 to its asymptotic distribution could take various

formsi it could have a normal distribution but with a different mean, a

normal distribution with a different mean and variance, or a distribution

that is not normal. In this section I will find the nature of the lack of

fit. I will apply exploratory techniques rather than large-sample theory

to model the lack of fit and improve the power curve.

First suppose the distribution is normal, but the parameter values are not

as predicted by asymptotic theory. The sample means and standard devia-

tions of the score statistics V1 / 2 obtained by simulation appear in Table

5.2 and in Figures 5.5 and 5.6, as a function of the odds ratio. The

dashed lines in the Figures live the values predicted by theory.

The sample means are quite near the lines for odds ratios near 1, but they

are smaller in absolute value for more extreme values of the odds ratio.

The sample standard deviations are near 1 when the odds ratio is larger

than 1, but decrease as the odds ratio approaches 0. I will attempt to

fit these points empirically and see if the fitted parameter values pro-

duce a power curve that is closer to tho observed power.

.- , . -' . ,i.i.; : i ? . . .: '- . -. 2, . - ,-,-,.
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Table 5.2. Sample Means and Standard Deviations for the Score

Statistics W1/2 from the Simulation

For each value of the odds ratio, the table contains the mean and standard

deviation for the corresponding sample of 400 simulated score statistics.

Odds Ratio Mean Standard Deviation

.10 -3.1401 .811

.13 -2.9747 .854

.16 -2.7089 .857

.20 -2.5578 .891

.25 -2.2370 .872

.32 -1.8835 .891

.40 -1.5818 .950

.50 -1.2058 .927

.63 -.8701 1.03

.79 -.4426 .877

1.00 -.1030 .971

1.26 .3228 1.03

1.58 .7173 1.03

2.00 1.1245 .979

2.51 1.5460 1.03

3.16 1.8816 1.01

3.98 2.1756 1.03

5.01 2.4961 1.00

6.31 2.8428 1.01

7.94 3.1542 1.03

10.00 3.5221 .962

o
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Because the sample means appear to be an odd function of the log odds

ratio and because the simple linear function fits well for odds ratios

near 1, this suggests adding a cubic term in log y. A least squares fit

with the linear term constrained to 3.11/2 (the square root of the infor-

mation) leads to -0.065 as the coefficient of the cubic term. This is the

dotted line in Figure 5.5, and it appears to give a good fit to the sample

means.

The sample standard deviations, however, appear to lie on two lines: one

at the constant value 1.0 for f>1 and the other with a positive slope. It

seems reasonable to assume continuity, so I fit the second line by least

squares subject to the constraint that it pass through the point (1,1).

The estimated slope is 0.078. This is the dotted line in Figure 5.6.

Figure 5.7 shows the previous power curves along with one obtained by

using parameters given by this empirical fit. The new curve is a marked

improvementi it misses only 2 of the 21 confidence intervals.

The last column in Table 5.1 also shows a good fit. Only the score

statistics calculated with the odds ratios equal to .16 and 10 produce a

normal distribution that is significantly different from the empirical

distribution at the 0.05 level.

Normal probability plots of the samples show that the normality assumption

is justified. Figures 5.8 and 5.9 contain the plots for f=0.l and f=10,

respectively. The points seem to lie on a straight line. Plots for other

i 7"i. I~li...................'i........ ..........
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Figure 5.8. Normal Probability Plot for Score Statistics
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Figure 5.9. Normal Probability Plot for Score Statistics
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values of the odds ratio are similar.

To see if the empirical fit holds more generally, I performed a second

simulation. I generated [Xt) via the relation Xt = PXt I + ut, where (ut)

is a sequence of independent standard normal random variables, p = 0.5,

and X0 = 0. The sample size, intercept, and slope were 150, -1, and 0.5,

respectively.

The results are summarized in Figures 5.10-5.12. In Figure 5.10 the

dotted line is the curve

I= .39112 (log f) - 0.065 (5.39/3.10)1/2 (log P)3

where 5.39 is the information number in the second simulation and 3.10 is

the information number in the original simulation. The asymptotic line

gives an excellent fit to the observed means when 0.5, unlike the pre-

vious case. For t<0.5 the behavior is qualitatively similar to that found

in the first simulation, but the empirical fit is not as good.

In Figure 5.3.1 the results are similar to those found earlier, but there

seems to be a steeper slope for q<1 and there is some indication that when

ol) the standard deviation exceeds 1.

Figure 5.12 contains a plot of the observed power, first order asymptotic

power, and the power obtained b, the empirical fit. The fitted power may

be marginally better than the asymptotic power for V(0.6, but the asymp-

totic power seems better elsewhere.
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In summary, the simple first order approximation to the distribution of

the score statistic gives a power function that is not significantly

different from the power observed in a random sample when the odds ratio

differs from one by a factor of no more than two or three. For more ex-

treme odds ratios the approximation overestimates the power, though it

might be considered adequate as a qualitative description of the power. A

higher order approximation does not significantly improve the agreement

between the empirical and theoretical power curves.

A look at the sample of score statistics, though, shows that their distri-

bution is normal but with parameters that vary systematically from those

predicted in the asymptotic approximation. Fitting a smooth curve to

these parameters allows calculation of a power function more in agreement

with the observed power. This empirical fit can be obtained by simulation

for any given set of X's, but a fit obtained for one particular set of X's

does not appear to be valid for other X's.

........ *----- -- ~
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Chapter 6

Missing Data

In this chapter I will examine the effect of missing Y values on the score

statistic and to a more limited extent on the estimation process. I will

assume that the corresponding X values are not missing, and I will comment

on this assumption where appropriate.

6.1 Effect on the score test for independence

In this chapter I will examine the effect of missing Y values on the score

statistic for testing independence (rl) and on the estimation process.

Recall that with no missing data the log likelihood function and its

derivatives can be written

L - log P[Yg=yl] + I Yt log X + (1-Yt) log (1-n),

aL Y-n an

8L Y-71 an
=p N(l-ff) ap

where n = P[Yt=lIYti]. This leads to a score function for f that

contains products of consecutive Y values.
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Suppose Yt-1 is not observed but Xt_1 , Yt-2' and Xt-2 are observed. If I

define nt,m = P[Yt=lYtm] and nt(z) = P[Yt=lYt-l=z), then if Yt=l the

contribution to the log likelihood from Y is

log ft,2 = log( P[Yt=lIYt_1= ] P[Yt_1=.lYt_ 2]

+ P[Yt=llYti=0] P[Yti=OIYt_2] )

- log( fft(l) nt-l(Yt_2) + fft(O) (l-ntl(Yt_2 ))),

and if Yt=0 the contribution is log(l-Rt,2 ). (Note that these are random

variables; they depend on Yt_2.)

Using this expression for the likelihood, the score test can still be per-

formed and parameter estimates can still be found by maximum likelihood

when a single Y value is missing. If two or more consecutive Y values are

missing, ntm can be written similarly by summing over all possible values

of Yt-I through Yt-m+l" This cannot be done, however, if the correspond-

ing l's are missing, because the likelihood is a function of all these

X's.

Suppose first that only Yt-I is missing. The contribution of the tth term

of the likelihood to the score function for , can be written

_1 ant  ant 2
t-,21t,t2 (1-Y

t ft, 2  81 t 1 -t, 2  all

with

.... o~-.

--...-'.:.-.''-"-:'.': ":- .',''.:..'.N -4= .'.'' . " . .. "..".".". * " '. N', -" " , . _. . - .- " :-'
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all t,2 an ) (1 an1t-1~ t-2
af aO( t-1 t-2 t Op

an t (0) On (Y (0)x-( -

avt-1 t-2 t Olp

Evaluated at ip1 this simplifies to

=0.

Therefore there is no contribution to the score statitistic due to the de-

pendence between Ytand Yt-2 if Yt1is missing.

This is also true if more than one observation is missing, as can be seen

by writing

ittk t ,2(l t~2 ,k-2 (Yt-k) t,2(O (nt.2k..2(Yt..k

so that

Oitk - n~( R (Y )+ ff (1)
Oa Of t-2,k-2 t-k t,2 Op

Op-2k- t(Yk- t-k t O

The first factors in the first and third terms are zero (from above),

while the second and fourth terms cancel, since Rt,2(l) = itt2(O) under

the null hypotheiis.
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In summary, if Yt-1 is missing there is no contribution to the score sta-

tistic from the dependence between Yt-2 and Yt" The only positive terms

in the score statistic are those that involve consecutive observations.

The reduced dependence between Yt-k and Yt cannot be measured by this

statistic for any k>l.

If, for example, every second observation in a sample were missing, it

might be possible to reparametrize and use 0 = f(j) as the measure of de-

pendence, where f is such that f'(1)=O. The score function would be

(8L/a )/f'( ), so it might approach a finite non-zero value as y ap-

proaches 1 for a suitably chosen f. However in such a case it may be

simpler to assume a model in which the odds ratio between Yt and Yt-2 is

constant for all t, and to treat the problem as if no data were missing.

This is a different model, but it might be nearly the same if the marginal

probabilities are nearly constant.

In the more likely case of some consecutive observations together with

some separated by gaps, however, the contributions from consecutive obser-

vations are infinitely larger than the contributions from observations

separated by gaps. Therefore no such reparametrization is possible in

this case.

There is no standard procedure for modifying the Durbin-Watson statistic

for missing values when testing for serial correlation in a least squares

regression. Three possible modifications are given by Savin and White

. .
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(1978) and by Honohan and McCarthy (1982). Two of these are similar to

the score statistic presented here, they omit the terms in the statistic

that involve missing values. The other simply removes any missing values

and treats any surrounding observations as if they were taken at consecu-

tive times.

6.2 Effect on estimation of the odds ratio

It is still possible to write down the likelihood function in the presence

of missing data, so the maximum likelihood estimates can be found. Be-

cause there is no simple general expression for the derivatives of the log

likelihood, however, it would probably be easier to use a derivative-free

maximization procedure in this case. Using Newton's method would require

calculating and programming first and second derivatives for every 'gap

length' observed in the sample.

It seems that some information would be lost if n observations span m>n

time periods, in comparison with the information in n consecutive observa-

tions. I will show below that this is usually, but not always, the case.

Suppose the coefficients and therefore the marginal probabilities [pt) are

known, and I want to estimate the odds ratio V. Then the contribution to

the Fisher information for estimating p can be calculated for an observa-

tion both when the previous value is observed and when it is missing. The

ratio of the two information numbers gives the asymptotic relative effi-

ciency of the two estimators and provides a measure of the information

loss caused by the intervening missing observation. These information

...........................*..* ... *.*'.*'.'~. ]
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numbers are calculated below.

Table 6.1 contains this ratio under the following conditions. In the case

of consective observations I assume they each have marginal probability

0.5 of Osuccess.9 In the second case I assume the same two random vari-

ables are separated by a single missing value whose marginal probability

of success takes values between 0.5 and 0.95 in increments of 0.05. In

both cases I use odds ratios increasing from 1/32 to 32 in multiples of 2.

The surprising feature in this table is the appearance of ratios larger

than 1 for Pt-1 near 0.5 and for extreme values of the odds ratio. This

indicates that for those parameter values, if only two observations can be

taken it is advantageous not to take them consecutively, but to allow an

intervening value to pass unobserved. When # is very large two consecu-

tive observations take the same value with a very high probability, so

little information is gained about the value of y. Skipping an observa-

tion reduces the dependence and provides more information.

This effect is more pronounced in Table 6.2, where the marginal probabili-

ties of the observed values are 0.1. Here the ratio exceeds 1 for certain

values of the other marginal probabilities when the odds ratio is as high

as 0.25. For these values of the odds ratio, however, the dependence is

not simply reduced by inserting a missing observation, its direction is

also changed.

Suppose a statistician is able to take a fixed number of observations of a
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Table 6.1. Asymptotic Relative Efficiency

when Pt = 0.5

Asymptotic relative efficiency of the maximum likelihood estimator of the

odds ratio when a single missing value intervenes between two observa-

tions, as compared with two consecutive observations. P is the marginal

probability that the missing variable is 1. The observed variables all

have marginal probability 0.5 of success.

Odds Ratio

P 1 2 4 8 16 32

.50 .000 .114 .400 .743 1.059 1.314

.55 .000 .112 .388 .708 .974 1.134

.60 .000 .104 .353 .612 .767 .761

.65 .000 .093 .301 .482 .529 .434

.70 .000 .078 .239 .346 .328 .225

.75 .000 .061 .174 .225 .185 .109

.80 .000 .043 .114 .131 .094 .049

.85 .000 .026 .065 .066 .042 .020

.90 .000 .013 .028 .026 .015 .007

.95 .000 .003 .007 .006 .003 .001

P 1 1/2 1/4 1/8 1/16 1/32

.50 .000 .114 .400 .743 1.059 1.314

.55 .000 .112 .388 .708 .974 1.134

.60 .000 .104 .353 .612 .767 .761

.65 .000 .093 .301 .482 .529 .434

.70 .000 .078 .239 .346 .328 .225

.75 .000 .061 .174 .225 .185 .109

.80 .000 .043 .114 .131 .094 .049

.85 .000 .026 .065 .066 .042 .020

.90 .000 .013 .028 .026 .015 .007

.95 .000 .003 .007 .006 .003 .001

. - ' ' - . , .. . - ,. - . - - . , - . . . . . . , , , .- ,. . . ., . . , , , ' , , ,,
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Table 6.2. Asymptotic Relative Efficiency

when pt = 0.1

Asymptotic relative efficiency of the maximum likelihood estimator of the

odds ratio when a single missing value intervenes between two observa-

tions, as compared with two consecutive observations. P is the marginal

probability that the missing variable is 1. The observed variables all

have marginal probability 0.1 of success.

Odds Ratio

P 1 2 4 8 16 32

.50 .000 .061 .085 .054 .024 .009

.55 .000 .051 .062 .036 .015 .005

.60 .000 .041 .044 .023 .009 .003

.65 .000 .031 .030 .015 .005 .002

.70 .000 .023 .020 .009 .003 .001

.75 .000 .016 .013 .005 .002 .001

.80 .000 .010 .007 .003 .001 .000

.85 .000 .006 .004 .001 .000 .000

.90 .000 .002 .001 .001 .000 .000

.95 .000 .001 .000 .000 .rqO .000

P 1 1/2 1/4 1/8 1/16 1/32

.50 .000 .146 .464 .613 .523 .350

.55 .000 .169 .618 .915 .851 .601

.60 .000 .187 .800 1.351 1.394 1.057

.65 .000 .200 1.005 1.971 2.309 1.925

.70 .000 .203 1.218 2.822 3.864 3.664

.75 .000 .194 1.404 3.919 6.482 7.336

.80 .000 .179 1.505 5.140 10.595 15.241

.85 .000 .131 1.434 6.040 15.678 30.099

.90 .000 .079 1.095 5.668 17.669 41.728

.95 .000 .027 .480 3.033 10.030 21.221
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binary first-order Markov process with known marginal probabilities, and

his object is to estimate the odds ratio of the matrix of transition pro-

babilities. The calculations used in creating these tables could be used

to determine an optimal sampling scheme. For example, if the marginal

probabilities were all 0.5, the first row in Table 6.1 indicates that more

information about the odds ratio is obtained by observing the process at

times 1 and 3 than at times 1 and 2 if l 2 16.

These tables show that for certain sequences of marginal probabilities, if

the odds ratio is known a priori to lie in a certain region it may be

profitable to observe the process intermittently rather than continuously.

In such cases calculation of the above ratio could allow an optimal sam-

pling scheme to minimize the asymptotic variance of the estimate of the

odds ratio. However for most values of the odds ratio and marginal proba-

bilities it is better to take consecutive observations. In these tables

and in all others I examined, the ratio is always less than 0.21 for odds

ratios within a factor of 2 of 1. It is unlikely that in any realistic

application the evidence presented here warrants letting values pass

unobserved.

This phenomenon was observed previously in the case of stationary first

order autoregressive processes with known mean 0 by Dunsmuir (1981). (His

univariate continuous model is analagous to the binary process with known

constant marginal probabilities.) His results can be used to show that

for values of the autoregressive parameter larger than 3-1/2, it is more

advantageous to skip a time point between observations than to take two



96

consecutive observations of the process.

Dunsmuir goes further and derives formulas that can be used to compute the

asymptotic relative efficiencies whenever the frequencies of gap lengths

are given. He applies these results to two types of sampling schemes:

Bernoulli sampling, where the series is observed or not at each time point

according to a sequence of independent Bernoulli random variables, and

regular A-B sampling, where the series is observed according to a repeat-

ing pattern of A observations and B missing values.

In the binary case the asymptotic relative efficiency could be calculated

for any particular pattern of regular A-B sampling. Bernoulli sampling,

on the other hand, involves random unbounded stretches of missing observa-

tions, and since no general expression for the information as a function

of gap length seems to be feasible, the asymptotic relative efficiency

cannot be calculated in closed form.

In the remainder of this section I will calculate the Fisher information

only for the two cases used in computing the ratios in Table 1: consecu-

tive observations and observations separated by a single missing value.

The Fisher information for consecutive observations is given in Chapter 4,

but I repeat it here for convenience.

For an observation Y2 preceded by another observation YI, the contribu-

tions to the log likelihood and its derivatives are

-~~~~~~~~ ~ -
I
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L Y Y2 log Q2 + (1-YI)Y 2 log (p2-42 ) + Y1 (1-Y2 ) log (pl-s2)

+ (1-Y )(1-Y2) log (l+42-pl-P2)

8, a2 1 22 (1-Y 1 )Y2  (1 -(1-Y 2  (2-Y 1 )(1-Y 2 )

-- - -- +af 2  (p2-02 pl-a2 (+2-pl-p22 "

82L a * y ~1 2 (1-Y I)y 2  1 (1-Y 2  (1-Y 1)(1-Y 2

av2 r 2  a 2 y (-Y) pi- 1 + 2 1-P

,- j 2 1 y 2 1 2 + ( -Y ) ( 1 - ! ) ( 1 -Y 2

*, .1 21 22 (1a-pl--p2)281 a2 (p2-a2) (p ('+'2

The expectation of the first term in the second derivative is 0, so the

Fisher information is

-E 2L = I 1 + _+2P 1iv 82 of 2 + P2-a2 Pl-o2 ''-lp

SE = 2- 21 I 1 1

,1+- -1 J +p[2L 2 +2 pl.o2 1+2-p._p2

This is the information obtained from an observation when the preceding

observation is not missing.

Now suppose a single unobserved Y2 intervenes between two observed values

Yl and Y3. For convenience define the following four quantities and their

derivatives:

D, (l-p 2 )s 2 03 + P2 (P l -o 2 )(P 3 -a 3 )
e1

"" ........... .-.-... :..,. ...,...-..-... .... ,,... .......,..... ....,. ..-. . . ....... / .... .,, ,...., ,'.. .. .. .. ,.- .,- I
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D 2 =(l-p 2)(p2-a2)s3 + p2 (l1a 2-pl--p2)(p3-*3)

D = (1-p2)c2(p2-i 3) + p2(pl-o2)(l+ 3-p2-p 3)

D 4 (l-p2)(p2-a2)(p2-a3) + p2(l+a2-pl-p2 )(l1+a 3-p 2-p3)

8D1  2 aa 831
al (l-p2) 0,6 a3 + a 2 .~~

0D 2 =43 (l-p2)) al+

+O 2D -(p- 3 -a-pp2 Ja

all (l-p2) [ - 2 Up 3 ) (p2- 2) 803l 3
a,3

+ ~ [ r (le- 3 ) (l+o2-p-p2) .aft J
Simlifin th3 dei atie lea to a "

..( l - .. . . . . . . . . . . . . . . .
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8D 1  aD2  aD3 aD4  a 2 ( 13
-= - '- = - = .- = (0L-P2P3)'I- + (02-PlP2) aval) a 1 a~ fe

Then letting A = P2(l-P2), the contribution to the likelihood from the

Y3 term can be written

log L - Y1Y3 log [ D1/A ] + (1-Y1 )Y3 log [ D2/A ]

+ Y1 (
1-Y3 ) log [ D3 / A I + (1-Y1)(1-Y3) log [ D4/A ]i

The score function is therefore

a log L YY 8D (1-Y1)Y3 aD2 Ylll-Y3 aD3
__ _ 13 D 1 + 13 2q + D3-Y 8Dp

8VD 1  *q. D 2 8l '

(1-Y1 )(1-Y 3  aD4

D4  8V

a'M

a2 C(3-p2p3) + v (°2-pIp 2)a 3+

'-" " X [ Y 1Y 3D  (1-Y1)Y3 Y1 (1-Y3)D + (l-Y1) (1-Y3)D .

D1 D 2 D3D4

I -

The expectation of the second factor in square brackets is zero, so the

Fisher information does not contain the derivative of the first term. The

expectation of the second derivative is

. .. . . .m . . . . . . . . . . . . . . . . . . . . . .. . . . .. . . . . . .. .. . .. ..
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OT *2 J ~ - (G-p 2 p3 ) + air (-plp 2)

r Y3 D l + (1-Y1)Y3 aD2 + Y1(1-Y3) aD3

XE[ D O 2 a ?D2 ai
_D1  D2  1 3

(1-Y 1)(1-Ya3 8D 4

I [a 2  aa 1 1

-= a (a3-p2p3) + a ( 2 -plp2) P2 11-P 2)

X 1 D1  1 aD 1 D 1 D 1D I i D +2 aor D 3 81) D4Of
L-J

i a2 0 12 -1
8- 2 (aa-PlP3) + ai (a2-pp 2 ) P2(l-p2 )

The negative of the latter quantity is the expression for the Fisher

information that was used in computing Tables 6.1 and 6.2.
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Chapter 7

Graphics

Autocorrelation in least squares regression is often easily detected in a

plot. If the coefficients are estimated by least squares and the esti-

mates are used to compute residuals (rt), then a plot of rt as a function

of t will generally show any serial dependence

Similar plots are not as useful in the serial dependence model. One

reason for this is that the residuals in some sense cannot be separated

from the fitted values as they can in least squares.

The two models differ in the constraints placed on the residuals. In

least squares, adding any fitted value Pt to any residual rt produces an

acceptable observation Yt : + rt. In binary regression for each fitted

probability Pt there are only two possible residuals, 1-Dt and -4t.

Another difference is in the effect on joint probabilities of the marginal

probabilities. In least squares, if the true error process is (at), the

probability that s t and et_1 have the same sign is a function only of the

autocorrelation. In binary regression the probability that yt-pt and

Ytl-Pt-l have the same sign depends not only on the odds ratio but also

on pt and pt-1" If both marginal probabilities are close to one, then for

some to values smaller than I the probability that the two errors have the

..- . . *,- ..• - - . . . . - . .. - ,i d ., . a. m ll '" .. .. ""' -
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same sign is larger than 0.5.

Figure 7.1 contains three plots of residuals from an ordinary logistic

regression as a function of time. In each case there are 100 observations

with marginal probabilities satisfying log (pt/(l-pt)) l+xt , where (xt)

are independent standard normal random variables. I chose these plots

subjectively as typical results for sequences generated using 0 = 4, 1,

and 0.25. The values of the score statistics for testing independence are

also given on the plot.

The residuals used in the plot are standardized as follows:

1/4 Yt-ft
r t =n [ t(1-1t)fl(1-t )]1/4

I chose this scale because n-1/2rtrtl is a component of the score statis-

tic. This will be more important in Figure 7.2. Here it does not change

the visual impression of the plots, only the scale markings on the verti-

cal axis.

At first glance the appearance of each of these plots resembles that of

the least squares residuals from a process with negative autocorrelation,

since the lires are Jagged and they cross the axis frequently. However

this is in large part due to the discreteness of the residuals rather than

their serial dependence.

If the three plots are compared, some features become apparent. Wide

hills and valleys are more common for large values of the odds ratio than
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for small values. This is especially true for deep valleys; consecutive

large negative residuals occasionally appear when r=4 (such as at t=16 and

28) but rarely when r=0.2 5 . Also more numerous peaks and valleys for low

values of t give the impression that the plots are more 'stretched' hori-

zontally moving from the bottom plot to the top.

Unfortunately none of these visual impressions is as striking as the

values of the score statistics associated with each plot.

Because the score statistic is so useful, it can be presented visually by

noting

n
1/2  Y _t-;t Yt-l"t-l

t2[10t(1-0 t)Pt 1 ( - - Aj  [3t(1-P t);t-1(1-; t-1 ) ] 1A

-1/2= r t rt I ,

so a plot of rt against rt_ 1 may be useful. Figure 7.2 contains these

plots for the same residual vectors used in Figure 7.1.

There are several features in these plots that are worth exploring.

First, the plot for V=4 appears to be divided into four clusters. This

phenomenon occasionally appears in this type of plot for any value of Ili

it is caused more by the marginal probabilities than by the value of ff.

If there are few small marginal probabilities, then there will be few

small negative residuals. Therefore the scatter plot will be sparse just

below the horizontal axis and just to the left of the vertical axis.

A second feature is the presence of many points near the origin in the

.-... .-...-.-. v............. ............... .-.~ .....-...... ............... ..... .:...'.. ..- '.. ..-. .. '..........)'
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first quadrant. This again depends on the marginal probabilities; if

there are several consecutive marginal probabilities near 1, there will be

several small positive residuals. If the odds ratio is large, though,

this tendency will be more pronounced, as in Figure 7.2.

A third feature, perhaps not as obvious as the other two, is that there

are more extreme points in quadrants I and III if 101l and more in quad-

rants 11 and IV if f<l. (Here I define *extreme' points as those with

both coordinates far from 0.) It is this feature that seems to be a good

indicator of serial dependence.

Extreme points indicate that two consecutive observations took values for

which the marginal probabilities were relatively low. The odds ratio,

however, is a measure of how the joint probability differs from the prod-

uct of the joint probabilities, so the frequency of these events gives

some information about the odds ratio. (In Figure 7.2 there are no ex-

treme points in quadrant I when fr=4, but this is not typical of such

plots.)

The score statistic is a multiple of a sum of the products of consecutive

tandardized residuals, so the contribution of a point depends 
on the

product of its coordinates. Therefore in interpreting these plots it is

helpful to consider each point in relation to the hyperbolas defined by

constant values of rtrt... It may be useful to superimpose these hyper-

bolas on the plot.

.. . . .
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It may also be helpful to look at this plot as a pictorial representation

of a two-by-two table. If (pt) were constant, the maximum likelihood es-

timate of V would be

(# of points in quadrant I) (U of points in quadrant III)
(N of points in quadrant II) (U of points in quadrant IV)

(The points would also appear in the same plotting position.) If the mar-

ginal probabilities do not vary a great deal, this relation suggests that

counting points in each coordinate, or just obtaining some visual impres-

sion of the counts, may give information about V.

In summary, residual plots for the logistic regression model do not give

the strong visual indication of serial dependence that they give in ordi-

nary least squares. Information about serial dependence can be obtained

through inspection of these plots, but the most striking features of the

plots are not those that are most useful in detecting serial dependence.

Experience or careful study is needed in order to extract the desired

information. The score statistic is a much better indicator of serial

dependence.

*- .. . - . , ..-}9 - } -- K * K.-* -.. .:..i.. . . * .- -- -.- i : .. -- i-- " -
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Chapter 8

Application to EKG Data

The inspiration for the serial dependence model came from work on the

automatic classification of heart beats by their EKG traces. In this

chapter I give a brief description of the problem. I also apply some of

the procedures developed in this paper and I mention some of the diffi-

culties that arise.

8.1 Background

In this section I give a brief description of the automatic beat classifi-

cation problem. More details are given by Ngwengwe (1984).

Examination of EKG traces can give valuable information about the likeli-

hood of future heart problems. Often life-threatening heart trouble such

as ventricular fibrillation is preceeded by milder arrhythmia. Detection

of abnormalities can therefore aid the physician in deciding whether pre-

ventative measures are required.

Figure 8.1 shows a typical normal beat. The curve is the electrical po-

tential measured between two electrodes placed on the patient's chest.

Each beat consists of a small P wave, a larger QRS complex, and a small T

wave. A physician can detect abnormal beats such as premature ventricular
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Figure 8.1. Idealized Normal Beat. This figure shows the components of a

normal beat observed without noise on a single channel.

R
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Figure 8.2. Choice of Points for Ellipse. The solid curve is the magnitude of

the signal. Only consecutive points around the peak with a magnitude at

least ten percent of the peak height are used in the ellipse calculation.
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Points included Baseline = 0
in ellipse
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contractions (PVC's) by examining the EKG trace for beats that differ in

some way from this normal form. Ngwengwe studied the use of automatic

procedures for detecting abno. -alities by computer.

This study used the IT/BIH database. The database contains EKG measure-

ments on forty-eight patients, each about thirty minutes in length. Each

observation consists of a pair of measurements, giving the electrical

potential between two pairs of electrodes placed on the chest along

roughly perpendicular axes. Along with each trace is a set of beat loca-

tions and classifications provided by a cardiologist, so the number of

beats and the type of each beat can be considered known for the purpose of

this work.

Ngwengwe carried out a study of the ability of various features of the EKG

traces to discriminate between normal heart beats and premature ventricu-

lar contractions. Among the techniques used to measure the power of each

feature as a discriminrting variable were linear discriminant analysis,

recursive partitioning, and logistic regression.

Some of the best features were suggested by a simple graphical procedure.

If the two components (or channels) of the EKG measurement are plotted

against each other and observed over time, they appear to trace out an

ellipse. The appearance of the ellipse is different for PVC's than for

normal beats. Ngwengwe found that features associated with this ellipse

provided excellent discrimination between normal beats and PVC's.



...

Figures 8.2 and 8.3 illustrate the procedure Ngwengwe used to obtain the

ellipse features. Between each pair of beats is a relatively long stretch

over which the signal is roughly constant. Taking the median signal over

a long range therefore provides a 'baseline' signal that can be subtracted

from the entire range. This can be done for both channels. This provides

an origin, and the distance of the two dimensional measurement from this

origin is plotted in Figure 8.2.

The bulk of the apparent ellipse consists of points in the time range

during which the magnitude of the signal is at least ten percent of its

peak value. This is the cutoff line in the figure. Only points in this

range are used in the ellipse calculation. For normal beats, this range

generally includes only points from the QRS complex. For PVC's, on the

other hand, this criterion may cause points from the P wave or the T wave

to be included.

Figure 8.3 is a typical plot of the two components of the IG trace. One

end of the ellipse contains many points, including those along the base-

line. These are excluded by the cutoff. The other points trace out the

ellipse, and the distance between these points generally increases as the

points move toward the opposite end of the ellipse.

The parameters of the ellipse can be estimated by computing the mean vec-

tor and covariance matrix for the points outside the cutoff. Because of

the closer spacing at one end of ellipse, it is necessary to weight the

points according to a scheme described by Ngwengwe. The ellipse then con-
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Figure 8.3. Ellipse Parameters. The parameters of the ellipse are estimated

by a method described by Ngwengwe (1983). Parameters used in this chapter

are the number of points in the ellipse and the coordinates of the center.

a Center of fitted

ellipse

............... .

a " Excluded by

a 10% criterion
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sists of those points with a Mahalanobis distance from the center equal to

two.

Ngwengwe investigated the ability of the five ellipse parameters and the

number of points in the ellipse to discriminate between normal beats and

PVC's. The three measurements he found most useful are the following:

NPOINTS: the number of points in the ellipse, a measure of the width

of the beat.

XCENTER: the X coordinate of the center of the ellipse, a measure of

the height along channel 1.

YCENTER: the Y coordinate of the center of the ellipse, a measure of

the height along channel 2.

These are the features that I will use in this chapter.

8.1 Logistic regression

Various difficulties occur in trying to fit the probability of a PVC as a

function of the above features by logistic regression. For many patients

it is possible to separate the normal beats and the PVC's by a hyperplane

in the three dimensional feature space. In some cases a single feature,

usually NPOINTS, would separate the two beat types. This is a sign that

the features work well, but it prevents the fitting of a logistic

regression. I will refer to this as 'perfect separation.0

One assumption made in logistic regression is that observations are inde-

pendent given their covariates. This does not seem to be a reasonable

. %.
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assumption here, and that is the subject of this section. I will apply

the techniques used in this paper to two of the patients.

The difficulties in fitting a serial dependence model exceed those in

fitting an ordinary logistic regression. Clearly for those patients with

perfect separation, the serial dependence model cannot be fit. Even with-

out perfect separation, a high degree of serial dependence may lead to an

infinite odds ratio estimate.

Another difficulty is a consequence of the excellent discrimination pro-

vided by these features. In many cases the fitted probability of a PVC is

near zero for normal beats and near one for PVC's. When the odds ratio is

large and two identical beat types appear in a row, the marginal proba-

bility of the observed pair may be very close to one. This leads to

numerical problems in the maximum likelihood computations.

Logistic regression for patient 217 produces the following estimates:

Coefficient Estimate Standard Error

Intercept 3.946 1.242

NPOINTS -.1228 .03121

"CENTER -.0003469 .003575

YCENTER -.1009 .01487

The score statistic is WI /2 = 0.23419, giving a one-step odds railo esti-

mate of 1.4850. There is perfect association. so the maximum likelihood

estimate of the odds ratio is infinite.
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To examine the effect on the coefficient estimates, I computed restricted

maximum likelihood estimates of the coefficients with the odds ratio set

at various values. The results are as follows:

Odds Ratio Intercept NPOINTS XCENTER YCENTER

2 3.911 -.122 -.00033 -.1000

4 3.879 -.121 -.00032 -.0979

8 3.898 -.122 -.00033 -.0941

16 3.963 -.125 -.00034 -.0883

32 3.922 -.125 -.00029 -.0825

64 3.810 -.122 -.00023 -.0778

128 3.677 -.119 -.00018 -.0745

256 3.573 -.116 -.00018 -.0723

512 3.490 -.114 -.00020 -.0709

Throughout this range the estimates remain within one half of a standard

error of the logistic estimates, so the serial dependence does not seem to

have had any adverse consequence on the coefficient estimates.

Patient 210 is an example of a data set with perfect separation. However

if NPOINTS is not used the perfect separation disappears, so I will per-

form logistic regression using only the other two features. I do this in

order to illustrate the effect of serial dependence, but of course NPOINTS

is the best feature in this case and it should not be ignored in a search

for the best model.

.
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The results are as follows:

Logistic Logistic Serial Dep. Model

Coef. Estimates Std Errors Coef. Estimates

Intercept -.315 .272 -.313

ICENTER .0318 .0023 .0322

YCENTER -.0288 .0039 -.0276

The score statistic is W1 / 2 = 1.2979, and the one-step estimate of the

odds ratio is 4.67. The maximum likelihood estimate of the odds ratio is

1.79. Here again there is not a significant difference between the logis-

tic and maximum likelihood estimates, as measured by comparison with the

logistic standard errors.
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Chapter 9

Summary

In this chapter I give a brief summary of the paper. I also comment on

alternative models for serial dependence in binary regression and I pre-

sent some generalizations of the serial dependence model.

9.1 Summary

In this paper I have proposed a regression model for binary time series,

by analogy with the first order autoregressive model for normal time

series. Dependence between successive observations is measured by the

odds ratio, and this odds ratio is assumed constant over time. The pro-

cess has a Markov property, so two observations are independent given an

intervening observation. The marginal probability of (Yt=l} is a logistic

function of covariates. In the special case of independence, the odds

ratio is equal to one, and the model is equivalent to the ordinary logis-

tic model.

With this model calculations of quantities involving marginal probabili-

ties are quite simple. Calculations of joint probabilities are more com-

plicated, but they are conventiently done by defining the quantity at -

P[Yt=Yt.Il, which is the solution of a quadratic equation. The param-

eters of a log linear representation for joint probabilities can be re-

lated to the parameters of this model, and the interactions terms are

-:7 -... e.... . . . .. ." _. .,. . . . . . . . . . . . .
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simple functions of the odds ratio. A simple expression gives the odds

ratio between observations that are not adjacent. A crude bound on the

expression proves that the model generates *-mixing sequences.

If a logistic model is fit to a process generated by the serial dependence

model, inferences about the coefficients are suspect, because the standard

errors of the estimates are not correct. However the closest logistic

model to any serial dependence model is the one with the same coefficients

if the distance is the Kullback-Leibler distance using the serial depen-

dance model as the true model. This suggests that the ordinary logistic

coefficient estimates ought to be consistent.

In fact the maximum likelihood estimates of the coefficients and the odds

ratio are consistent under certain conditions, and a siuulation shows no

significant difference between the logistic and the maximum likelihood co-

efficient estimates. The maximum likelihood estimates can be calculated

by Fisher's scoring method, which is equivalent to Newton's method with

the second derivative replaced by its expectation. A simple estimator for

the odds ratio is obtained by computing the ordinary logistic coefficient

estimates and the score statistic for independence, and by finding the

odds ratio for which the expected value of that statisic is the value

actually observed. This estimate performs about as well as the maximum

likelihood for moderate values of the odds ratio. For more extreme values

is underestimates the magnitude of the log odds ratio, but it avoids the

problem of infinite estimates.

.- , V -. '- ''-_''- " ''', - -- " "" ' "-" " , .- :-/ -"" -- ""-"- - "'" . . " ": - "''"
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The score statistic for testing independence is simply the autocovariance

or its square root. The size and power of the test are well approximated

by the values given by large sample theory. The accuracy of these approx-

imations decreases as the odds ratio leaves the range [0.4, 2.5]. A

higher order approximation does not improve the accuracy outside this

range. For any given set of covariates an empirical approximation to the

power function can be obtained, but it is not valid for other covariates.

This suggests that the power depends on more than just the information and

the odds ratio.

If observations are missing, the contribution to the score statistic (for

testing independence) given by the dependence between observations on

either side of the gap is infinitesimal, so the terms in the statistic

must be summed over consecutive observations. An asymptotic relative

efficiency calculation shows that under some circumstances a statistician

may prefer to take a fixed number of observations spread out rather than

consecutively. However these circumstances are not likely to occur in

practical calculations, since they would require an extreme prior estimate

of the odds ratio and they might require advance knowledge of the marginal

probabilities.

Graphical displays of the residuals do not give vivid demonstration of

serial correlation here as they do in least squares. However careful

study of certain plots can be revealing.

Fitting of this model to features obtained from the MIT/BIB database of

. ..o . .
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EKG traces is complicated by perfect or near perfect separation of the

features of normal beats and premature ventricular contractions. In one

case with perfect association, restricted maximum likelihood estimates of

the coefficients do not vary a great deal as the odds ratio is set at

various values. In another case maximum likelihood estimation is possible

and the estimated odds ratio is 1.79. The alternative estimator gives a

higher value of 4.67.

9.2 Other models

Other models for serial dependence are possible. A direct generalization

of the least squares model with an autoregressive error term is the

following:

log (pt/(l-Pt)) = Xt'P + at, at = Pet-1 + ut"

where (ut) are indepenent normal random variables with mean zero and

common unknown variance. However this is no longer a logistic regression

model even when p=0. Under this model the sequence [pt ) has a joint

logistic-normal distribution. Some properties of this distribution are

given by Aitchison and Shen (1980). Simple expressions for the moments

are not possible, and maximum likelihood estimation of this model is

likely to be quite difficult.

A simpler model is the one used by Korn and Whittemore (1979)1 Y t- is

included as an explanatory variable for Yt. I will refer to this model as

the 'lagged dependent variable" model. Under this model the conditional

rather than the marginal probabilities take the logistic form. Fitting

the model is quite simple, since it can be done by ordinary logistic
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regression. Calculation of conditional probabilities is also simple.

As in the serial dependence model, the odds ratio between consecutive ob-

servations is constant. Since the process has a Markov property many of

the results from Chapter 2 apply to this model as well. In particular the

expression for the odds ratio between distant observations applies, and

this model also generates *-mixing sequences. It is interesting to note

that the expressions for V13 in equations [2.4] and [2.5] involve the

quantity u2 (1 )0 a parameter in the log linear representation for the joint

probabilities of three observations. These joint probabilities cannot be

determined under the lagged dependent variable model, because the marginal

probability of the first observation is unspecified. However the condi-

tional probabilities are sufficient to calculate u2 (1 ).

Any proof of the consistency and asymptotic normality of maximum likeli-

hood estimates that is valid for longitudinal data is not likely to apply

under the conditions assumed in this paper. However a proof of consis-

tency along the lines of the one in Chapter 4 may be possible given the

*-mixing property.

Calculation of marginal probabilities is difficult under the lagged depen-

dent variable model. In particular the marginal distribution of Y1 is not

determined by the conditions I have statedl it requires a specified prior,

or an assumed value or prior for Y0 . Then the marginal distribution at

each time is determined. Unfortunately calculating the marginal distribu-

tion at time t requires summing over all possible values of Y.0 s<t.

e , , .... : .., .= .............................. ,..:.......,........,......,..,........
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9.3 Generalizations

The serial dependence model consists of two components: the relationship

between the covariates and the marginal probabilities, and the serial

dependence. Both of these could be generalized.

The logistic model is perhaps the most common binary regression model, but

other models are possible. Most take the form pt = F(Xt'A)" where F(.)

is some continuous cumulative distribution function. This is the most

general model for which pt is a continuous monotone function of Xt'P and

for which pt approaches zero or one as Xt'A approaches plus or minus

infinity. Common choices for F, aside from the logistic, are the normal,

extreme value, and uniform.

The analysis here could be repeated for these models. Some of the re-

sults, such as the *-mixing property, depend only on the dependence and

not on the form of F. These results apply for any choice of F.

The odds ratio does not extend to higher dimensions. But from Chapter 2,

the constant odds ratio condition can be restated as follows: for all t,

log P[YtliYt=j] = u(t) + (- )i+lul(t) + (-l)J+lu2 (t) + (-l)i+Jul2,

where u1 2 is not a function of t. This suggests the following second or-

der model, with the plus or minus sign taken as appropriate to the usual

log linear model convention:

log P[Yt_2=i,Yt.l=J,Yt=k] = u(t) ± ul(t) ± u2 (t) ± u3 (t)

- u1 2 - u2 3  U13  u123

. . . . . . . . . . . . . . . . . . . . . .

. . .. . .. . .
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Here the final four terms are not functions of time. It may make sense to

require u12=u23, and the special case U123-0 may also be interesting.

Higher order generalization* can be defined similarly.
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A model is proposed for binary time series with marginal
probabilities given by logistic regression on explanatory variables,
by analogy with the first order autoregressive error model for least
squares regression. Measurements at adjacent time points are assumed
to have an odds ratio that is not equal to one and that is constant as
a function of time. Measurements separated in time are assumed to be
conditionally independent given an intervening observation.

Consequences of using an ordinary logistic model in the
presence of serial dependence are explored. The closest logistic model,
defined as the one with the minimum Kullback-Leibler distance, is shown
to be the one with the same marginal probabilities. Consistency of
the maximum likelihood estimator of the serial dependence model is
proved under certain conditions, and a procedure for finding these

estimates is given.

Properties of the model are found, including expressions for
the joint probabilities and the odds ratio between observations
separated in time. The model is shown to generate*-mixing processes.

A score test is derived in order to test for independence
after performing an ordinary logistic regression, and properties of
this test are explored. The effects of missing data on the score test
and on estimation of the odds ratio (with known coefficients) are

presented.

The model is applied to the problem of automatic classification
of EKG data based on feature extraction. A positive serial dependence
is found in the examples presented.
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